

Rapid Assessment Report for Site 25, Building 1346

Zone F Charleston Naval Complex

North Charleston, South Carolina

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0097

January 2000

RAPID ASSESSMENT REPORT AT SITE 25, BUILDING 1346

ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS, Inc.
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0097

JANUARY 2000

PREPARED UNDER THE SUPERVISION OF:

APPROVED FOR SUBMITTAL BY:

PAUL CALLIGAN, P.G. TASK ORDER MANAGER TETRA TECH NUS, INC. TALLAHASSEE, FLORIDA DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC. PITTSBURGH, PENNSYLVANIA

CERTIFICATION PAGE

I certify that the information contained in this report and on any attachments is true, accurate, and complete to the best of my knowledge, information, and belief.

Approved By:

Gregory D. Swenson, P.E.
South Carolina Registration No. 17132
SCDHEC UST Site Rehabilitation Contractor Class I & II No. 24

TABLE OF CONTENTS

SECT	ON		PAGE
EXEC	UTIVE	SUMMARY	ES-1
1.0	INTR	ODUCTION	1-1
	1.1	SITE DESCRIPTION	
	1.2	SITE HISTORY	1-3
	1.3	RECEPTOR SURVEY RESULTS	
	1.4	REGIONAL GEOLOGY AND HYDROGEOLOGY	
	1.5	SITE GEOLOGY AND HYDROGEOLOGY	
2.0	ASS	ESSMENT INFORMATION	2-1
	2.1	SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY	
		2.1.1 Site Geology	
		2.1.2 Site Hydrogeology	
	2.2	ASSESSMENT RESULTS	
	2.3	FIELD SCREENING ASSESSMENT	
	2.0	2.3.1 Soil Vapor Assessment	
		2.3.2 Soil Mobile Laboratory Results	2-3
		2.3.3 Groundwater Mobile Laboratory Results	2-3
	2.4	CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER	
	2.4		
		2.4.1 Chemicals of Concern in Soil	
	0.5	2.4.2 Chemicals of Concern in Groundwater	
	2.5	ANALYTICAL DATA	
	2.6	AQUIFER CHARACTERISTICS AND EVALUATION	
	2.7	FATE AND TRANSPORT MODELING	2-7
	2.8	PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN	2-8
3.0		EVALUATION	
	3.1	TIER 1 EVALUATION	
		3.1.1 Exposure Pathway Analysis	
		3.1.2 On-Site Commercial/ Industrial Worker	
		3.1.3 On-Site Visitor	
		3.1.4 On-Site Construction Worker	
		3.1.5 On-Site Resident	3-2
		3.1.6 Off-Site Resident	3-2
		3.1.7 Surface Water	3-2
	3.2	TIER 2 EVALUATION	3-3
		3.2.1 Ingestion and Dermal Contact with Soil for a Construction Worker	3-3
		3.2.2 Ingestion, Dermal Contact, or Inhalation of Vapors from Groundwater for a Construction Worker	
		3.2.3 Calculation of Groundwater RBSLs Protective of a Construction Worker	
		3.2.4 Risk From Soil Leaching to Groundwater for a Construction Worker	
		3.2.5 Inhalation of Volatiles from Soil for a Construction Worker	
	3.3	SUMMARY AND COMPARISON OF THE SELECTED SSTLs	
	3.4	RECOMMENDATIONS FOR FURTHER ACTION	3-8
4.0	REF	ERENCES	4-1

TABLE OF CONTENTS (Continued)

TABLES

- 1 WATER LEVEL AND SURVEY DATA
- 2 GROUNDWATER FIELD MEASUREMENTS
- 3 GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS
- 4 SUMMARY OF SOIL BORINGS AND SOIL VAPOR SCREENING
- 5 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL
- 6 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER
- 7 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL
- 8 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER
- 9 CURRENT LAND USE POTENTIAL RECEPTORS AND PATHWAYS WITHIN 1,000-FOOT RADIUS
- 10 FUTURE LAND USE POTENTIAL RECEPTORS AND PATHWAYS WITHIN 1,000-FOOT RADIUS

FIGURES

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Site Map and Sampling Locations
- 4 Soil CoC Map
- 5 Groundwater CoC Map
- 6 Groundwater Potentiometric Surface Map, September 11, 1999

APPENDICES

- A GEOLOGIC BORING LOGS
 - FIELD SAMPLING DATA SHEETS
- B ANALYTICAL LABORATORY DATA SOIL AND GROUNDWATER
- C AQUIFER CHARACTERIZATION DATA
- D RBCA CALCULATIONS

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed additional assessment activities requested by the South Carolina Department of Health and Environmental Control (SCDHEC) for Site 25 (Site Identification Number 01782) of Zone F, at the former Charleston Naval Complex (CNC), located in North Charleston, South Carolina. The site includes eight abandoned underground storage tanks (UST) located at Building 1346. The USTs provided retail gasoline to vehicles on-base since the mid-1960s and were abandoned in place from 1976 to 1991. Three new fiberglass tanks, installed in 1991, are currently being used at the site. The assessment was performed under the direction of SCDHEC Rapid Assessment (RA) guidance dated June 20, 1997, and Rapid Assessment Plan approval letter dated May 5, 1998.

In addition, SCDHEC reviewed the *Report of Findings, Vacuum Truck Extraction, Interim Corrective Action Pilot Test*, prepared by S&ME, Inc., dated May 21, 1998, and recommended "additional assessment activities to evaluate intrinsic remediation as the corrective action alternative for this site."

TtNUS has completed the additional assessment activities and has used the RA reporting format to describe the results. In addition, a Tier 1 and Tier 2 Evaluation was performed for the chemicals of concern (CoC) in soil and groundwater detected at the site in excess of the Risk-Based Screening Levels (RBSL). The risk evaluations followed the guidance set forth in the SCDHEC Risk-Based Corrective Action (RBCA) for Petroleum Releases, dated January 5, 1998.

TtNUS performed the following actions during the assessment:

- Reviewed Zone F, RCRA Facility Investigation Report, Charleston Naval Complex, (E&A/H, 1996) to identify potential sources and receptors for petroleum hydrocarbons in the vicinity, to evaluate public and private potable wells, to locate utility line areas, to locate nearby surface water bodies, and to determine surface hydrology and drainage.
- Reviewed previously prepared reports by Westinghouse Environmental and Geotechnical Services, Inc., and S&ME, Inc., on site activities dating from August 1991 to May 1998.
- Conducted site survey to identify utilities and to construct a site plan.
- Installed 28 soil borings to depths ranging from 4 to 12 feet below land surface (bls) using direct push technology (DPT).
- Collected soil samples for field screening using an organic vapor analyzer.

- Installed five temporary piezometers.
- Collected soil and groundwater samples from DPT borings for on-site mobile laboratory screening analysis for benzene, toluene, ethylbenzene, and total xylenes (BTEX); naphthalene; and diesel range organics.
- Collected and analyzed nine confirmation soil samples at a fixed-base analytical laboratory for BTEX and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260, and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270.
- Collected and analyzed one soil sample from one soil boring for total organic carbon using USEPA Method 415.1 and total recoverable petroleum hydrocarbons using USEPA Method 9071.
- Collected and analyzed two soil samples from one soil boring for grain size analysis using sieve and hydrometer methods.
- Collected groundwater samples from nine existing permanent monitoring wells for laboratory analysis at a fixed-base analytical laboratory.
- Collected groundwater samples from three wells for natural attenuation parameters.
- Analyzed groundwater samples for BTEX, methyl tert-butyl ether (MTBE) and naphthalene using USEPA Method 8260; PAHs using USEPA Method 8270; and lead using USEPA Method 3030.
- Collected depth to groundwater measurements to evaluate the groundwater flow direction.

Conclusions

Nine soil samples were collected on July 7, 1999, and were analyzed for BTEX and PAHs by a fixed-base laboratory. Benzene concentrations exceeded RBSLs for sandy soils where groundwater depths are less than 5 feet below ground surface in all site borings except one; concentrations ranged from 6 parts per billion (ppb) to 120,000 ppb. Total naphthalene concentrations were detected above RBSL in four boring locations; concentrations ranged from 18,000 ppb to 217, 900 ppb.

One groundwater sampling event was conducted in September 1999. Nine existing monitoring wells were sampled. BTEX, naphthalene, and MTBE constituents were detected above RBSLs in one monitoring well (CNC25-M05). In addition, the concentration of MTBE exceeded the RBSL at wells CNC25-M06 and 609004.

Tier 1 Evaluation

A site conceptual model identified one possible receptor with five pathways present for Site 25:

- 1. A construction worker in a utility trench ingesting subsurface soil and/or having dermal contact with impacted subsurface soil.
- 2. A construction worker in a utility trench who might ingest, have dermal contact with contaminated groundwater, and/or inhale petroleum hydrocarbon vapors emitted from groundwater.

Tier 2 Evaluation

The maximum soil concentrations of all CoCs were compared against the RBSL values for the construction worker exposed by dermal contact or incidental ingestion. Soil concentrations do not exceed the RBSLs for any of the CoCs; therefore, the construction worker ingesting or contacting impacted soil was not considered further.

The soil leachability model was used to calculate site-specific target levels (SSTLs) for the establishment of soil cleanup criteria. Benzene and naphthalene concentrations in the onsite, subsurface soil exceeded the calculated SSTLs for a construction worker in a utility trench.

Groundwater RBSLs were calculated for the additional pathways of dermal contact, incidental ingestion, and inhalation of volatiles by a construction worker in contact with shallow groundwater. The minimum RBSL for each CoC (regardless of the pathway) was used to compare to site groundwater data. Concentrations of benzene, toluene, and MTBE from MW-05 exceeded the selected minimum RBSLs. Therefore, remedial action is required at the site to protect the construction worker in the utility trench.

Recommendations for Further Action

Corrective action is required at Site 25. The representative concentrations of CoCs in groundwater are above the selected minimum RBSLs calculated for a construction worker. In addition, the SSTLs for soil leaching to groundwater are exceeded. Therefore corrective action is necessary. The goal of corrective action is to prevent an impact to the identified potential receptor (the construction worker in an onsite utility trench).

1.0 INTRODUCTION

Site 25 is located adjacent to Building 1346 at the intersection of Enterprise Avenue and Borie Street on the former Charleston Naval Complex (CNC), Zone F in North Charleston, South Carolina. The site functioned as a gasoline station since the mid-1960s providing gasoline for private and government vehicles. Initial evidence that a release occurred at the site was discovered in 1991 during the closure of an underground storage tank (UST) system on-site.

This Rapid Assessment (RA) was performed by Tetra Tech NUS, Inc. (TtNUS) located at 1401 Oven Park Drive, Suite 102, Tallahassee, Florida, 32308 (telephone number 850-385-9899). The assessment was performed on behalf of the U.S. Navy Southern Division (SOUTHDIV) Naval Facilities Engineering Command (NAVFAC), 2155 Eagle Drive, North Charleston, South Carolina 29406 (telephone number 843-820-7307). Authorization to conduct the assessment for the site was issued by NAVFAC under Contract Task Order (CTO) 0097. The assessment was performed under the direction of the South Carolina Department of Health and Environmental Control (SCDHEC) Rapid Assessment Plan approval letter dated May 5, 1998. Fieldwork necessary to complete the assessment was performed June 5, 1999, through September 21, 1999, by TtNUS.

1.1 SITE DESCRIPTION

The CNC is in the city of North Charleston, on the western bank of the Cooper River in Charleston County, South Carolina (Figure 1). The installation consists of two major areas: an undeveloped dredge materials area on the eastern bank of the Cooper River on Daniel Island in Berkley County and a developed area on the western bank of the Cooper River. The developed portion of the base is on a peninsula bounded to the west by the Ashley River and to the east by the Cooper River. The site is located within the developed portion of the base.

The area surrounding CNC is "mature urban," having been developed with commercial, industrial, and residential land use for many years. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. A site vicinity map, which exhibits adjacent properties and structures, vicinity roads, current utilities, and vicinity surface drainage, is included as Figure 2. The subject site was a former naval exchange retail gasoline facility that had eight USTs buried onsite and later abandoned in place.

Presently the site contains eight abandoned in place USTs, three active USTs, one structure (Building 1346), and a canopy covering the current and former dispensing locations (Figure 3). Recreational baseball and football fields are located immediately adjacent to the site on the northeast, east, and south sides, a school (unknown building number) is located to the southwest (approximately 300 feet away from the tank area), and buildings to the northwest. A second school is located approximately 600 feet to the northeast (Building 199).

According to the Initial Site Characterization prepared in 1991 by Westinghouse Environmental Services, the first USTs installed consisted of four 4,000-gallon steel USTs with steel piping located within the same tank basin and one 10,000-gallon steel UST located separately. The tanks, all used for gasoline, were listed as 1346-D, -E, -F, -G, and -H. The tanks were abandoned in place around 1978.

The site was retrofitted with three 10,000-gallon steel tanks (1346-A, -B, and -C), during the period 1977 to 1981. These tanks were taken out of operation in February 1991 following a failed tank tightness test. As a result, three new 10,000-gallon fiberglass tanks with single-walled fiberglass piping were installed in 1991 (Tanks 1346-I, -J, and -K). These tanks are currently being used by SEG Fleet Maintenance, a trucking company. The USTs at the site contained various grades of unleaded gasoline, regular unleaded, unleaded plus, and super unleaded. The site is currently active. The following table summarizes the USTs at Site 25.

UST I.D.	Installed Date	Taken Out of Service Date	Туре	Size (gallons)	Contents
1346-D	1960s	~1978	Steel	4,000	Gasoline
1346-E	1960s	~1978	Steel	4,000	Gasoline
1346-F	1960s	~1978	Steel	4,000	Gasoline
1346-G	1960s	~1978	Steel	4,000	Gasoline
1346-H	1960s	~1978	Steel	10,000	Gasoline
1346-A	1970s	1991	Steel	10,000	Gasoline
1346-B	1970s	1991	Steel	10,000	Gasoline
1346-C	1970s	1991	Steel	10,000	Gasoline
1346-1	1991	Active	Fiberglass	10,000	Gasoline
1346-J	1991	Active	Fiberglass	10,000	Gasoline
1346-K	1991	Active	Fiberglass	10,000	Gasoline

1.2 SITE HISTORY

In 1901, the U.S. Navy acquired 2,250 acres near Charleston to build a shipyard and the first naval officer was assigned duty in early 1902. Subsequently, buildings and a dry dock were constructed in the Naval Yard. The dry dock was completed in 1909 along with several other brick buildings and the main power plant, which is still in operation today. The first ship was placed in dry dock and work began on fleet vessels in 1910. World War I brought about an expansion of the yards, facilities, land area, and work force. The yard built two gunboats, several submarine chasers, and tugs in addition to performing repairs and other services to the fleet. In 1933, building activity had increased principally in construction of several Coast Guard tugs, a Coast Guard cutter, and a Navy gunboat, creating the need for more facilities and a much larger work force. In 1943 civilian work force peaked with almost 26,000 employees divided among three daily shifts. In 1956, construction began on piers, barracks, and buildings for mine warfare ships and personnel. Later in the decade, the facility became a major home port for combat ships and submarines of the U.S. Atlantic Fleet [EnSafe/Allan & Hoshall, Inc.(E/A&H), 1996].

In 1993, major cuts in defense spending, as a result in part to the end of the Cold War, caused CNC to be added to the list of bases scheduled for closure under the Defense Base Realignment and Closure Act (BRAC). BRAC regulates the closure and transition of property back to the community (E/A&H, 1996). With the scheduled closure of the base, operations were scaled back and environmental cleanup proceeded to make the property available for redevelopment after closure.

1.3 RECEPTOR SURVEY RESULTS

A survey of the site vicinity was conducted by TtNUS personnel to identify potential receptors for petroleum hydrocarbon contamination. The site plan (Figure 2) depicts all known utilities located within 250 feet of the Building 1346 location. According to facility personnel, utility lines are typically located 2 to 6 feet below land surface (bls) (SPORTENVDETCHASN, 1999). The following utility receptors were located within a 250-foot radius of Building 1346.

A water line is located at the northeast boundary of the site along South Avenue B and along the
southeast side along Borie Street. The water line located between the canopy and Borie Street is
approximately 50 feet southeast of the canopy and divides the area where UST basins are located. In
addition, the line transects the free product interception trench located on-site near the corner of Borie
Street and Enterprise Avenue.

- An 8-inch sanitary sewer line enters Building 1346 on the southwest side and extends southwesterly toward Enterprise Avenue. A sanitary sewer manhole is located approximately 30 feet south of the building. Four sanitary sewer manholes are located on Enterprise Avenue to the southwest.
- Three storm drainage catch basins are located on the north side of Building 1346. The storm drainage line originates near the canopy and extends northward toward a storm drain manhole located approximately 225 feet to the north at the corner of 9th Street and South Avenue B. Another storm drain manhole is located approximately 20 feet from the northwest corner of the canopy. A second storm utility line originates at a storm catch basin and storm manhole located approximately 20 feet from the south side of Building 1346 traversing the site northwesterly toward a storm manhole and catch basin along 9th Street.

Utilities on-site, and adjacent to the site within a 250-foot radius, that could serve as exposure points or as preferential pathways are shown in the following summary table.

Utility	On-site or Distance/Direction from site	Depth to Utility
Water Supply	On-site; ~20 feet	2 to 6 feet bls
Sanitary Sewer	On-site; ~100 feet west	2 to 6 feet bls
Storm Drainage	On-site; ~150 feet north	2 to 6 feet bls
Natural Gas	~300 feet to the northwest	2 to 6 feet bis

Potential receptors and preferential pathways within a 1000-foot radius of the site are summarized in the following table.

Description of Potential Receptor	Distance/Direction from Site
Construction workers in water supply utility trench.	~20 feet northwest of MW-05 and MW-06.
Commercial workers.	On-site. No complete pathways.
Trespassers.	Not applicable. Area is fenced.
Recreational visitors and/or residents.	Not applicable. Current and future site use is commercial.
Students/teachers/visitors at active school (located at Ave. D South & Borie St.).	~225 feet south/southwest of MW-06 (downgradient). No complete pathways.
Recreational visitors to football and baseball fields (east of Borie St. and north of South Ave. B).	~75 to 250 feet northeast, east, southeast, and south (upgradient, crossgradient, and downgradient). No complete pathways.

Description of Potential Receptor	Distance/Direction from Site
Students/teachers/visitors at active school (Building 199).	~600 feet northeast of Bldg. 1346 (upgradient). No complete pathways.
Groundwater at inactive industrial cooling water well (pump house Building 716).	~750 feet to the east of UST area (upgradient). No complete pathways.

A survey of groundwater users within a 7-mile radius of CNC was performed for the *Final RCRA Facility Investigation Report for Zone F* (E/A&H, 1996). According to this report, a survey of groundwater users within a 7-mile radius of CNC was conducted by the South Carolina Water Resources Commission to ascertain the extent of any shallow groundwater usage. Results of the water use investigation revealed that no drinking water wells, which utilize the shallow aquifer, are located within a 4-mile radius of CNC.

An industrial well, located approximately 750 feet east of the site and upgradient, supplied water to a compressor house for cooling tower operations. A recent visit to the site by TtNUS (October 1999) revealed an abandoned pump house for the well (Building 716). The industrial well is therefore believed to be inactive. Irrigation wells were not identified within 1,000 feet of the site. Numerous monitoring wells are located within 1,000 feet of the site. The nearest surface water body to Building 1346 is the Cooper River, located approximately 1,700 feet to the northeast.

There are no city, county, or state zoning ordinances as the property (CNC) is currently owned by the federal government. Information concerning zoning ordinances was obtained from the SOUTHDIV Remedial Project Manager located at 2155 Eagle Drive, North Charleston, South Carolina 29406 (telephone number 843-820-7307).

1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY

CNC is located in Charleston County, South Carolina, in the Lower South Carolina Coastal Plain Physiographic Province on the Cooper River side of the Charleston Peninsula. The peninsula is formed by the confluence of the Cooper and Ashley Rivers. Topography in the area is typical of the South Carolina lower coastal plain and is characterized by having low-relief plains broken by the meandering streams and rivers, flowing toward the coast past occasional marine terrace escarpments (E/A&H, 1996).

The geology of the Charleston area is typical of the southern Atlantic Coastal Plain. Cretaceous-age and younger sediments thicken seaward and are underlain by older igneous and metamorphic basement rock. Surface exposures consist of Recent or Pleistocene sands, silts, and clays of high organic content

referred to as the Wando Formation (E/A&H, 1996). Underlying the Wando Formation, increasing with age, are the Oligocene-age Cooper Group and the Eocene-age Santee Limestone. The Cooper Group is comprised of the Parkers Ferry, Ashley, and Harleyville Formations. The formation of particular importance in the Cooper Group is the Ashley Formation, which was formerly referred to as the Cooper Marl in most regional geologic literature. In more recent geologic nomenclature, the name "Cooper" has been given to a group of formations which includes the Ashley Formation, a pale green to olive-brown, sandy phosphoric limestone or marl, which is locally muddy and/or sandy. The Ashley Formation in the vicinity of Charleston is encountered at a depth of approximately 30 to 70 feet bls. The top of the Ashley Formation has been reported to be associated with an erosional basin and the entire Cooper Unit, including the Ashley Formation, is indicated to be approximately 300 feet thick (E/A&H, 1996).

Groundwater occurs under water table or poorly confined conditions within the Recent or Pleistocene deposits overlying the Ashley Formation of the Cooper Group. Transmissivity in the Pleistocene aquifer is generally less than 1,000 feet per day and well yields are variable, ranging from 0 to 200 gallons per minute (gpm). This groundwater contains high concentrations of iron and is commonly acidic at shallow depths (E/A&H, 1996).

The Cooper Group is hydrogeologically significant mainly because of its low permeability. In most locales, its sandy, finely granular limestone produces little or no water, but instead acts as confining material causing artesian conditions in the underlying Santee Limestone. Yields from wells in the Santee are usually less than 300 gpm (E/A&H, 1996).

1.5 SITE GEOLOGY AND HYDROGEOLOGY

The Hydrogeologic Assessment prepared by S&ME, Inc., of Mount Pleasant, South Carolina, February 1993, stated that lagoonal sediments, which include surficial fill material of black to gray-green silty clays characteristic of back barrier island sequences, are present at the site. Soft gray-green clays are generally encountered down to the Cooper Formation. The Cooper Marl was encountered at the site at a depth of 29 feet bls.

Traversing east to west across the site, the surficial soils (upper 8 feet) graded to dense red clays with a slight increase in silt content (when compared to the eastern end of the site). Below 8 feet the dense gray-green clays were again encountered. Groundwater was generally encountered at depths of 4 to 6 feet bls. The groundwater flow direction was determined to be from the east to the west across the site.

The RCRA Facility Investigation Report (E/A&H, 1996) described the Zone F geologic unit immediately beneath the surficial lagoonal sediments and artificial fill as the Quaternary sand (Qs) unit. It is typically a very fine to medium-grained silty sand, well to moderately well sorted, with little clay. Coloration varies between gray, orange, and brown. Occasional laminae of brown to black silt, as well as small shell fragments, are often present. Qs deposits exhibit an average distribution of 73 percent sand, 5 percent silt, and 21 percent clay with an average porosity of 38 percent. The Qs sedimentary deposits range from depths of 5 feet to 35 feet in Zone F (E/A&H, 1996).

2.0 ASSESSMENT INFORMATION

2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY

2.1.1 Site Geology

Twenty-eight soil borings were advanced at Site 25 under the supervision of a TtNUS geologist between June 5 and August 3, 1999 (Figure 3). Each of the borings was completed using direct push technology (DPT). Each DPT boring was advanced to a depth ranging from 4 to 12 feet bls providing soil samples to characterize the subsurface lithology. The majority of the soil borings terminated at a depth of 8 feet below land surface. In addition, five shallow piezometers were installed between July 27, 1999, and August 2, 1999, to depths of 12 feet below land surface to confirm the site's groundwater flow direction.

Based on lithologic descriptions from the soil borings and monitoring wells, the subsurface soil generally consist of interlayers of orange to red, tan, and gray to olive-green-gray, sandy clay, silty clay and sand near the surface to the borings' terminal depth. Generally, sandy clay was encountered in the soil samples submitted for field screening. These samples were collected from 2 to 7 feet below land surface with the majority of the field screening sample collection being performed at the 3- to 5-foot interval. Boring logs are presented in Appendix A.

2.1.2 Site Hydrogeology

Five temporary, small diameter, polyvinyl chloride (PVC) piezometers, P01, P02, P03, P04, and P05 were installed on the south side of Building 1346. The piezometers were constructed of 1-1/4-inch-diameter Schedule 80 PVC casing and well screen 10 to 15 feet in length. The screen section of the piezometer was installed to bracket the water table. The piezometers were used to confirm the groundwater depth and flow direction at the site.

Six existing permanent monitoring wells installed by S&ME, and two recently installed permanent monitoring wells installed by EnSafe were used to collect groundwater samples (and to re-confirm groundwater flow direction and gradient). The recorded water-level data collected from these wells during the investigation are presented in Table 1. Groundwater elevation measurements were recorded from the site monitoring wells on September 11, 1999. The potentiometric surface map depicts a distinct southwesterly groundwater flow direction away from the Cooper River.

As part of the *Final RCRA Facility Investigation Report for Zone F* (E/A&H, 1996), a tidal survey was conducted in selected shallow wells at low and high tide, respectively. Groundwater flow patterns occur between low and high tide events with little change. Surficial aquifer groundwater flow is highly variable in gradient and direction. A narrow groundwater divide trends east to northeast from the tank farm area in nearby Zone G. Groundwater flow south of this divide is generally in an easterly direction toward the Cooper River. A groundwater depression north of this divide is associated with well SME005. Groundwater movement north of Ninth Street is from the south and west toward the north across Hobson Avenue.

2.2 ASSESSMENT RESULTS

Twenty-eight soil borings were completed as part of the screening portion of the soil investigation at Site 25 between June 5 and August 3, 1999. The borings were completed using DPT, and samples were collected for screening. Screening samples were collected to evaluate subsurface soil and groundwater contaminant concentrations via an onsite mobile laboratory. The soil samples were collected from depths ranging from 2 to 7 feet bls. The soil and groundwater samples collected for mobile laboratory screening were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and naphthalene and diesel range organics (DRO).

Eight soil borings (SB-09 to SB-17) were completed, and samples were collected for analysis at a fixed-base laboratory to confirm the results of the onsite mobile screening laboratory. The confirmation soil samples were collected at depths ranging from 1 to 4 feet bls on July 7, 1999. The chemicals of concern (CoCs) evaluated and analyzed were BTEX, methyl tert-butyl ether (MTBE), and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260; polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270; and lead using USEPA Method 3030. Two samples from one soil boring (SB-12 at depths of 2-3 feet and 7-8 feet bls) were collected for grain-size analysis using sieve and hydrometer analysis. A soil sample collected from SB-15 at a depth of 3 to 4 feet bls was analyzed for total organic carbon (TOC) analysis using USEPA Method 415.1 and total recoverable petroleum hydrocarbons (TRPH) using USEPA Method 9071. All sample collection was conducted in accordance with the SCDHEC South Carolina Risk-Based Corrective Action for Petroleum Releases dated January 5, 1998. Lithologic logs for each soil boring are presented in Appendix A. The soil boring locations are shown on Figure 3.

Groundwater monitoring well purging and sampling were conducted on September 12, 13, and 21, 1999. Groundwater sampling was conducted using a peristaltic pump and low flow, quiescent techniques. The monitoring wells were sampled in accordance with SCDHEC South Carolina Risk-Based Corrective

Action for Petroleum Releases dated January 5, 1998. Each well was purged of three well casing volumes until water quality parameters of pH, temperature, and conductivity stabilized. The field data sheets are included in Appendix A. A summary of the field parameter measurements is presented in Table 2. Groundwater samples were analyzed for BTEX, MTBE, ethylene dibromide (EDB), and naphthalene using USEPA Method 8260 and PAHs using USEPA Method 8270. Three of the groundwater samples were also analyzed for the following natural attenuation parameters: dissolved oxygen, alkalinity, carbon dioxide, sulfide, ferrous iron, nitrite, manganese, nitrogen/nitrate, sulfate and methane. Groundwater natural attenuation data are summarized in Table 3.

2.3 FIELD SCREENING ASSESSMENT

2.3.1 Soil Vapor Assessment

Twenty-eight soil borings were completed to evaluate for soil vapors as part of the soil screening assessment at Site 25. Organic vapor analyzer (OVA) headspace measurements were recorded at 1-foot intervals from ground surface to the top of the water table. Table 4 summarizes all soil borings installed and provides the maximum soil vapor screening results. Figure 3 presents the soil boring locations.

Soil vapor concentrations ranged from non-detectable to 4,900 parts per million (ppm). Vapor concentrations exceeding 1,000 ppm were detected from eight soil boring locations. The highest soil vapor concentration of 4,900 ppm occurred from CNC25-B17 at a sample depth of 3 to 4 feet bls. Most soil vapor detection occurred from soil depths of 2 to 5 feet bls.

The soil vapor assessment was used as a screening method to assist in identifying locations for collection of confirmation soil samples analyzed at a fixed-base laboratory. Soil sample locations were determined, in part, based on these data.

2.3.2 Soil Mobile Laboratory Results

One soil sample collected from each soil boring was analyzed in a mobile laboratory for BTEX and diesel range organics using USEPA Method 8260. The soil samples were selected based upon the soil vapor screening results with the additional criterion that the samples originate in the vadose zone above the water table. Table 5 presents a summary of the analytical soil data from the mobile laboratory.

As indicated in Table 5, BTEX constituents were detected in the mobile laboratory soil screening for borings CNC25-SB-01, -05, -07, -19, -20, -21, and -25. Diesel range organics were detected in two borings, SB-01 and SB-20.

The mobile laboratory soil analysis was used as a screening method to assist in identifying locations for collection of soil samples for fixed-base laboratory analyses and to aid in delineating the extent of contamination in soil. Confirmation soil sample locations were determined, in part, based on these data.

2.3.3 Groundwater Mobile Laboratory Results

A groundwater sample was collected from soil boring locations near the former UST systems around Building 1346. Each groundwater sample was analyzed by a mobile laboratory for BTEX and diesel range organics using USEPA Method 8260. Table 6 presents a summary of the analytical groundwater data from the mobile laboratory.

BTEX constituents were reported in groundwater samples from CNC25-SB-01, -05, -07, -19, -20, -21, -22 and -27. Diesel range organics were detected above the laboratory reporting limits in SB-05, -07, -19, -20, and -21.

The mobile laboratory groundwater analysis was used as a screening method to assist in delineating the extent of groundwater contamination.

2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER

2.4.1 Chemicals of Concern in Soil

Nine subsurface soil samples were collected from the Site 25 area for determination of CoCs. The soil boring locations are shown on Figure 3. Table 7 summarizes the CoCs detected in the soil samples. BTEX concentrations exceeded the risk-based screening level (RBSL) for sandy soils where groundwater is less than 5 feet bls, in all but one soil sample collected at the site (CNC25-B15). Benzene concentrations ranged from an estimated 6 parts per billion (ppb) to 120,000 ppb.

Total naphthalene concentrations (naphthalene and 2-methylnaphthalene combined) were detected above RBSL in four boring locations. Concentrations ranged from 18,000 ppb to 217,900 ppb in CNC25-B10, -12, -13, and -17. The RBSL for naphthalenes in sandy soils where depth to groundwater is less than 5 feet bls is 210 μ g/kg. The RBSL for soil was selected based upon a grain-size analysis completed

on sample CNC25-B12 at depths of 2 to 3 feet and 7 to 8 feet bls. Both samples confirmed the presence of a sandy soil matrix at the site. Soil analytical data sheets and grain size analysis reports are provided in Appendix B.

2.4.2 Chemicals of Concern in Groundwater

The analytical results for CoCs detected in groundwater samples are presented in Table 8. BTEX, naphthalene, and MTBE constituents were detected above RBSL at CNC25-M05 and in the duplicate sample. MTBE concentrations exceeded the RBSL at CNC25-M05, -M06, and 609004.

2.5 ANALYTICAL DATA

Soil analytical data generated during this RA are summarized and compared to the RBSLs in Table 7. Groundwater analytical data generated during this RA are summarized and compared to the RBSLs in Table 8. The soil and groundwater laboratory analytical data for this RA are included in Appendix B.

2.6 AQUIFER CHARACTERISTICS AND EVALUATION

Groundwater levels were measured from the site monitoring wells on September 11, 1999. The groundwater flow direction across the site was determined to be southwesterly toward Enterprise Avenue as illustrated on Figure 6.

As part of the *Final RCRA Facility Investigation Report for Zone F*, rising and falling head slug tests were conducted on several shallow monitoring wells located throughout the Zone F Quaternary sand unit to determine the hydraulic conductivity of the surficial aquifer (E/A&H, 1996). Slug tests were conducted by instantaneously adding (falling head) or removing (rising head) a volume (slug) of water from the well and measuring the recovering water level with a data logger. A hydraulic conductivity value was then calculated for the rising head test and for the falling head test. The average hydraulic conductivity for each well was determined by calculating the geometric mean of the rising and falling head values. Because hydraulic conductivity data are lognormally distributed, the geometric mean was determined to be the most representative measure of central tendency.

The well construction details and boring logs for each well tested during the RCRA investigation were reviewed to determine which wells were most representative of the conditions present at Site 25. To make this determination, the screened interval and proximity to the site were evaluated. Based on this

evaluation, monitoring wells 613004, 620002, 607001, and 613001 were selected as the most representative wells (see Appendix C for slug test data).

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Using Darcy's Law the average linear groundwater velocity may be expressed as:

$$V = \left(\frac{K}{n}\right) x i$$

where:

V = average velocity

K = hydraulic conductivity = 0.7 ft/day

n = volumetric porosity = 0.36

(based on analyses of Qs samples in the Zone F RFI Report)

= most recent hydraulic gradient measurement = 0.0096 ft/ft

therefore:

$$V = \left(\frac{0.7 \text{ ft/day}}{0.36}\right) \times 0.0096 \text{ ft/ft}$$

$$V = 0.0187$$
 ft/day or 6.8 ft/year

In summary, the seepage velocity of the surficial aquifer was calculated to be approximately 6.8 feet per year based on a hydraulic conductivity of 0.7 feet per day, a hydraulic gradient of 0.0096 feet per foot, and a porosity of 36 percent for sandy soil.

2.7 FATE AND TRANSPORT MODELING

Soil and groundwater concentrations exceed the RBSL; therefore, evaluation of Site 25 will continue beyond Tier I. Fate and transport modeling is not required because both the source of contamination and the potential receptor are located onsite, however modeling was performed because of the high concentrations onsite.

The Domenico model was the fate and transport model used to determine groundwater site-specific target levels (SSTLs) in the risk analysis. The Domenico dilution/attenuation model is presented in the SCDHEC guidance document, *South Carolina Risk-Based Corrective Action for Petroleum Releases* (SCDHEC 1998). This model is very conservative in that it assumes an infinite mass, areal source

condition through which groundwater flows. The model incorporates biological decay effects through a first-order decay process; however, this mechanism was ignored because SCDHEC guidance specifies that the decay rate must be assumed to be zero if site-specific decay rates have not been determined.

The impacted groundwater source area was modeled as 50 feet (15.00 meters) wide and 6.56 feet (2.0 meters) deep; these values are conservative defaults suggested by the American Society for Testing Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (ASTM, 1997). The maximum source concentrations are assumed to exist throughout the source area, further compounding the conservatism of the estimate.

Site-specific data were used for saturated hydraulic conductivity, hydraulic gradient, porosity, and fraction of organic carbon in soil (2.47E-06 m/sec, 0.0096 ft/ft, 0.36 cm³/cm³, and 6.16E-4 g-C/g-soil, respectively). The soil bulk density (1.73 g/cm³) was determined using a porosity of 0.36 and assuming that the specific gravity of the soil particles is 2.7.

However, because free product was previously detected in monitoring well MW05, the theoretical groundwater concentration in equilibrium with unleaded gasoline based on Raoult's Law (see Appendix D) was calculated for each of the potential CoCs. These calculated values were used for the source concentration in predicting the 10- and 20-year plume migration. This analysis showed that the theoretical concentrations of benzene (59.8 mg/L), toluene (96.8 mg/L), ethylbenzene (3.2 mg/L), xylene (24.9 mg/L), MTBE (5289 mg/L), and naphthalene (0.22 mg/L) each exceed the groundwater RBSLs; therefore, these CoCs were modeled. The concentration of naphthalene (i.e., 0.848 mg/L) detected in well MW05 exceeds the theoretical calculated concentration for gasoline (0.22 mg/L) indicating that free product may have contaminated the well at the time it was sampled and that a different petroleum product (e.g., diesel fuel) may have been released during the site's history.

The following estimates of dispersivity were used in the Domenico model as given in SCDHEC (1998):

Parameter	Estimate
Longitudinal Dispersivity, α _x	x/10, where x= distance between the point of
	exposure and the source or compliance point
Transverse Dispersivity, α _y	α _x /3
Vertical Dispersivity, α _z	α _x /20

2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN

The Domenico model was used to predict the distance at which the leading edge of the plume is attenuated to SCDHEC RBSLs in 10 and 20 years without using degradation due to biological decay. This was done by adjusting the time to 10 years (3.15x10⁸ sec) and 20 years (6.31x10⁸ sec) and solving for distance (x) by trial and error. The source was assumed to be the impacted area onsite. The distance was changed until the required distance that is necessary for the concentration to attenuate to the RBSLs was determined. Model estimates for 10 and 20 years are provided in the following table:

Domenico Model Time Period	Chemical of Concern	Estimated Distance Traveled (feet)
10 year	Benzene	202
	Toluene	108
	Ethylbenzene	56
	Xylenes	26
	MTBE	287
	Naphthalene	25.5
20 year	Benzene	355
	Toluene	159
	Ethylbenzene	77
	Xylenes	36.5
	MTBE	507
	Naphthalene	34

The Domenico 10-year and 20-year simulation spreadsheets are presented in Appendix D.

3.0 RISK EVALUATION

3.1 TIER 1 EVALUATION

Performance of a Site Conceptual Model is required because the RBSLs for soil and groundwater were exceeded. Maximum concentrations of benzene, toluene, ethylbenzene, xylene, and naphthalene exceeded the RBSLs for sandy soil where depths to groundwater are 5 feet bls or less (table 7). Maximum concentrations of benzene, ethylbenzene, toluene, xylene, naphthalene, and MTBE exceeded the RBSLs for groundwater (Table 8). Exceeding the soil RBSL requires identification of current and future potential receptors and human exposure pathways.

3.1.1 Exposure Pathway Analysis

This section presents the receptor characterizations of the potentially exposed populations in the vicinity of the site and identifies the potentially complete exposure pathways for those receptors. SCDHEC requires that only those exposure pathways with CoC concentrations exceeding Tier 1 RBSL concentrations are examined in a Tier 2 risk-based corrective action report. Tables 9 and 10 present the exposure pathway assessments for current and future use scenarios.

3.1.2 On-Site Commercial/ Industrial Worker

An on-site commercial or industrial worker is defined as a business employee who works in a commercial/industrial capacity at the site. The future use of the property is expected to be industrial or commercial for the foreseeable future; therefore, an on-site worker was considered as a potential receptor. Incidental ingestion and dermal contact with impacted soil are expected to be negligible for commercial/industrial workers because they are located inside a building. Drinking water at this site is provided by the city; therefore, ingestion of groundwater is not a complete exposure pathway. Building foundations are assumed sufficient to prevent volatilization from both soil and groundwater into a commercial building, and there is no history of vapors in the commercial building. It is unlikely that any additional exposure pathways will exist for future on-site workers; therefore, no complete pathways exist for either current or future commercial/industrial workers.

3.1.3 On-Site Visitor

An on-site visitor is defined as any person other than a worker who might come on site. On-site visitors would have the same exposure pathways as commercial workers, but their exposure duration would be much shorter. This receptor does not have to be quantified because a potential on-site visitor's chemical intake would not determine risk or cleanup levels at the site.

3.1.4 On-Site Construction Worker

An on-site construction worker is defined as a laborer who would be involved in intrusive activities on or around the site, particularly in the area of subsurface utilities. On-site construction workers could be exposed to constituents in soil by the following pathways: inhalation of volatiles from soil, dermal contact with soil, and incidental ingestion of soil. On-site construction workers could be exposed to constituents in groundwater by the following pathways: inhalation of volatiles from groundwater, dermal contact with groundwater, and incidental ingestion of groundwater. A fresh water distribution line runs through the site; therefore, the point of exposure location for the on-site construction worker was considered to be at the source.

3.1.5 On-Site Resident

An on-site resident is defined as any person making his or her home at the site. This site is expected to remain a commercial/industrial facility; therefore, the on-site resident receptor was not considered further.

3.1.6 Off-Site Resident

An off-site resident is defined as any person making his or her home near the site. This receptor's location is either an actual current residence near the site or is a vacant lot or property on which a residence could be built. The site is located in an area that will likely remain commercial/industrial. Therefore, this potential receptor was not considered further.

3.1.7 Surface Water

The Cooper River is located approximately 1,700 feet upgradient and to the northeast of the site. Because of the distance to the river, this exposure pathway was not considered for ingestion of surface water.

3.2 TIER 2 EVALUATION

The Tier 1 Site Conceptual Model identified one possible receptor with six pathways:

- 1. A construction worker in a utility trench who might ingest subsurface soil, have dermal contact with impacted subsurface soil, or inhale volatilized vapors from affected soil.
- 2. A construction worker in a utility trench who might ingest contaminated groundwater, have dermal contact with contaminated groundwater, or inhale vapors from contaminated groundwater.

Based on the site conceptual model, a Tier 2 evaluation was performed.

3.2.1 <u>Ingestion and Dermal Contact with Soil for a Construction Worker in a Utility</u> Trench

The Site Conceptual Model identified the only potential receptor as a construction worker ingesting or having dermal contact with soil while working in a utility trench. For ingestion and dermal contact with soil while working in a utility trench, subsurface soil exposure to a construction worker is similar to surface soil exposure. The RBSLs given by SCDHEC for ingestion and dermal contact with surficial soils by a commercial worker are compared to the site soil concentrations in the table below. (RBSLs for commercial workers are conservative for construction workers. See footnote (1) below.)

CoC	RBSL*	SB-09	SB-10	SB-11	SB-12	SB-13	SB-13D	SB-14	SB-15	SB-16	SB-17
Benzene	200	0.052	9.100	.006	120.0	5.0	10.0	.007	< 0.006	0.008	32.0
Toluene	410,000	0.015	< 1.60	< 0.006	360.0	8.4	18.0	0.012	< 0.006	< 0.005	240.0
Ethylbenzene	200,000	< 0.006	63.0	0.014	560.0	73.0	130.0	0.013	< 0.006	< 0.005	49.0
Xylenes	1,000,000	< 0.006	3.0	0.019	2200.0	160.0	300.0	0.012	< 0.006	< 0.005	250
Benzo(a)- anthracene	3.9	< 0.4	< 0.46	< 0.36	< 0.43	<0.40	0.240J	< 0.40	<0.36	< 0.4	< 0.4
Benzo(b)- fluoranthene	3.9	< 0.40	< 0.46	< 0.36	< 0.43	<0.40	0.40	< 0.40	<0.36	< 0.40	< 0.40
Benzo(k)- fluoranthene	39	< 0.4	< 0.46	< 0.36	< 0.43	<0.40	<0.40	<0.40	<0.36	< 0.40	< 0.40
Chrysene	390	< 0.4	< 0.46	< 0.36	< 0.43	<0.40	<0.40	<0.40	<0.36	< 0.40	< 0.40
Dibenzo(a,h)- anthracene	0.39	< 0.4	< 0.46	< 0.36	< 0.43	<0.40	<0.40	<0.40	<0.36	< 0.40	< 0.40
Naphthalene ²	41,000	0.004J	31.6	0.066	217.90	80.0	155.0	0.60	<0.006	0.004J	18.0

Note: All concentrations in mg/kg. Concentrations which exceed RBSL are bolded.

- * RBSLs for ingestion or dermal contact with surficial soil (RBCA, Table B6).
- (1) A commercial worker has a typically assumed exposure duration of 25 years and an exposure frequency of 250 days/year. A construction worker would be expected to have a much lower exposure duration and exposure frequency based on the nature of utility or construction work. The exposure frequency can be assumed to be 90 days/year and the exposure duration can be assumed to be 1 year. These assumptions are based on the nature of utility work. Therefore, the RBSLs for construction workers are expected to be higher than those for commercial workers.
- (2) Naphthalene (Total) combines Naphthalene (8260 value) and 2-Methylnaphthalene (8270 value).

As shown in the above table, maximum soil concentrations of constituents do not exceed the RBSLs for any CoC except dibenzo(a,h) anthracene. The concentrations for dibenzo(a,h) anthracene exceed the Commercial RBSL for ingestion or dermal contact with surficial soil. However, the RBSLs provided in the RBCA Guidance assume that a commercial worker will have an exposure duration for 25 years having an exposure frequency of 250 days per year. A construction worker would be expected to have a much lower exposure duration and exposure frequency based on the nature of utility, construction, or remediation work. The exposure frequency can be assumed to be 90 days/year or less and the exposure duration can be assumed to be 1 year or less. These assumptions are based on the nature of typical utility-type work. Furthermore, the maximum source concentrations of dibenzo(a,h)anthracene detected in soils barely exceed the above RBSLs (probably occurring because the laboratory reporting limit, or practical quantitation limit, slightly exceeds the RBSL). Therefore, dibenzo(a,h)anthracene is not considered a threat to a construction worker in a utility trench. A construction worker ingesting or contacting impacted soil is not considered at-risk and the dermal/ingestion pathway is not considered for further analysis.

3.2.2 Ingestion, Dermal Contact, or Inhalation of Vapors from Groundwater for a Construction Worker in a Utility Trench

An additional completed pathway for construction workers is BTEX, naphthalene, and MTBE in the groundwater possibly exposing the workers to CoCs while working in a utility trench. The construction worker's potential exposure to groundwater containing any of these CoCs was assumed to consist of three pathways: dermal contact, incidental ingestion, and inhalation of volatiles.

3.2.3 <u>Calculation of Groundwater RBSLs Protective of a Construction Worker in a Utility</u> <u>Trench</u>

Groundwater RBSLs provided by SCDHEC are for ingestion only; therefore, RBSLs were calculated for the additional pathways of dermal contact, incidental ingestion, and inhalation of volatiles.

Groundwater RBSLs for the construction worker were calculated for three pathways: dermal contact, incidental ingestion, and inhalation of volatiles. A target cancer risk of 1 x 10⁻⁶ and a target hazard quotient of 1 were used in the calculations. Standard defaults were used when available and applicable

to a construction worker. When no standard parameters were available, conservative assumptions were used. Where possible, site-specific parameters were used for site conditions. For all pathways, the exposure frequency was assumed to be 90 days/year and the exposure duration was assumed to be 1 year. These assumptions were considered conservative based on the nature of utility work.

The dermal contact RBSLs were calculated using procedures in *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance* (USEPA Peer Consultation Workshop Draft, 1998). Based on expected limited contact with groundwater, the event frequency was assumed to be one event/day and the event duration was assumed to be 1 hour/event. The skin surface area available for contact was 4500 cm², based on one-fourth the skin surface area given in the risk assessment guidance document for a swimming adult.

The incidental ingestion RBSLs were calculated using the equation given in *Risk Assessment Guidance* for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), EPA/540/1-89/002 (EPA 1989). An incidental ingestion rate of 0.01 L/day was assumed based on a fraction (12.5 percent) of the incidental ingestion rate for a wading adult (0.01 L/hr), considered for an 8-hour work day. The incidental ingestion rate for wading adults is given in Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment (USEPA Region 4, 1995).

The inhalation RBSLs were calculated using equations given in the ASTM Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites, Designation E 1739-95e1 (1997).

The following table summarizes the calculated RBSLs for the analyzed pathways and shows the minimum RBSL, regardless of the pathway (see calculations in Appendix D).

	Dermal RBSL (mg/L)	Incidental Ingestion RBSL (mg/L)	Inhalation RBSL (mg/L)	Ground-	Maximum Onsite Groundwater Conc. (mg/L)	l i
Benzene	0.85	68.52	0.15	0.15	26	Yes
Toluene	23.98	5677.78	5.38	5.38	38	Yes
Ethylbenzene	6.05	2838.89	14.50	6.05	3.2	No
Xylenes	102.33	56777.78	NA*	102.33	13	No
Naphthalenes	1.63	1135.56	2.63	1.63	0.848	No
MTBE	25.92	141.94	293.44	25.92	33	Yes

Note:* No inhalation reference dose is available for xylenes; therefore, no inhalation RBSL can be calculated.

Based on the above table of calculated RBSLs, benzene, toluene, and MTBE in the groundwater pose a risk to a construction worker exposed to groundwater. Ethylbenzene, xylene, and naphthalene concentrations in groundwater do not pose a threat to the construction worker.

3.2.4 Risk From Soil Leaching to Groundwater for a Construction Worker in a Utility Trench

The Soil Leachability Model was used to calculate SSTLs for the establishment of soil cleanup criteria for benzene, toluene, ethylbenzene, xylenes, and naphthalene in soil. Site-specific parameters were used when available; otherwise, values were estimated from the charts on pages C2 through C5 of the SCDHEC guidance document, *Risk-Based Corrective Action for Petroleum Releases*, January 5, 1998. Grain size analysis of a representative vadose soil sample (SB-12 from 2 to 3 feet bls), showed that the soil contained 88 percent sand and 7 percent clay. The calculated RBSLs for a construction worker possibly ingesting, coming in contact with, or inhaling volatiles from the groundwater were used for calculating the SSTLs shown below. Appendix D presents the calculations for the model.

Chemical of Concern	Soil Leaching SSTL (mg/kg)	Maximum Onsite Soil Concentration (mg/kg)	Greater than the SSTL
Benzene	0.2	120	Yes
Ethylbenzene	14.5	560	Yes
Toluene	11	360	Yes
Xylenes	686	2200	Yes
Naphthalenes	24	217	Yes

Because the maximum soil concentration of benzene, ethylbenzene, toluene, xylene, and naphthalene found during the site assessment exceeds the calculated SSTLs for these CoCs, the construction worker is considered at-risk if exposed to groundwater leached through the impacted soil.

3.2.5 Inhalation of Volatiles from Soil for a Construction Worker in a Utility Trench

RBSLs for a construction worker in a trench inhaling volatile vapors from soil were calculated. The calculations are provided in Appendix D. The inhalation RBSLs were calculated using equations given in the ASTM Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites, Designation E 1739-95E1 (1997).

The following table summarizes the calculated RBSLs for the analyzed pathway:

Chemical of Concern	Inhalation SSTL (mg/kg)	Maximum Onsite Soil Concentration (mg/kg)	Greater than the SSTL
Benzene	7,853	120	No
Ethylbenzene	226,430	360	No
Toluene	85,887	560	No
Xylenes*	NA	2200	NA
Naphthalenes	3,123	218	No

Note: * No inhalation reference dose is available for xylenes; therefore, no inhalation RBSL can be calculated.

Based on the above table, the construction worker exposed to subsurface soil is not at risk if inhaling benzene, toluene, ethylbenzene, xylenes, or naphthalenes volatilizing from the soil.

3.3 SUMMARY AND COMPARISON OF THE SELECTED SSTLs

The following table summarizes the calculated SSTLs according to media (for exposure) and exposure pathway for the CoCs that may be a threat to the identified receptor construction worker in an onsite utility trench.

Media (for exposure)	Exposure Pathway	CoC	Unit	SSTL	Maximum Onsite Concentration	Greater than SSTL?
Groundwater	Dermal contact, inhalation, or ingestion	Benzene	mg/L	0.15	26	Yes
		Ethylbenzene	mg/L	5.38	38	Yes
		MTBE	mg/L	25.92	33	Yes
7745						
Soil (leaching from groundwater)	Dermal or incidental ingestion	Benzene	mg/kg	0.2	120	Yes
	i	Ethylbenzene	mg/kg	14.5	560	Yes
		Toluene	mg/kg	11	360	Yes
		Xylenes	mg/kg	686	2200	Yes
		Naphthalenes	mg/kg	24	218	Yes
			T T			
Soil (leaching from groundwater)	Volatilization or inhalation	Benzene	mg/kg	0.2	120	No
		Ethylbenzene	mg/kg	14.5	560	No
		Toluene	mg/kg	11	360	No
		Xylenes	mg/kg	686	2200	No
		Naphthalenes	mg/kg	24	218	No

The above SSTLs should be used for establishing cleanup levels at the site.

3.4 RECOMMENDATIONS FOR FURTHER ACTION

Corrective action is required at Site 25. The benzene, ethylbenzene, and MTBE in groundwater are above the selected minimum SSTLs calculated for a construction worker. In addition, the SSTLs for soil leaching to groundwater are exceeded for benzene, toluene, ethylbenzene, xylenes, and naphthalenes; therefore, corrective action is necessary. The goal of corrective action is to prevent an impact to the identified potential receptor (the construction worker in an onsite utility trench).

4.0 REFERENCES

ASTM (American Society for Testing and Materials) 1997. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, Designation: E 1789-95, West Conshoohocken, Pennsylvania.

Conoco Inc. 1996. Concawe Diesel Fuel/Kerosene.

E/A&H (EnSafe/Allen & Hoshall, Inc.), 1996. Zone F RCRA Facility Investigation Report, Naval Base Charleston, Charleston, South Carolina, 1996.

SCDHEC (South Carolina Department of Health and Environmental Control), 1970. Standard Limited Assessment, June 1970.

SCDHEC 1998. South Carolina Risk Based Corrective Action for Petroleum Releases, January 1998.

SPORTENDETCHASN (Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston), 1996, Underground Storage Tank (UST) Assessment Report UST, Charleston Naval Base Complex, North Charleston, SC, October 7, 1996.

SPORTENDETCHASN, 1999. Personal Contact between Paul Calligan TtNUS and Copes Wannamacker SPORTENDETCHASN, June 17, 1999.

USEPA (U.S. Environmental Protection Agency), 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), EPA/540/1-89/002.

USEPA REGION IV, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995, Atlanta, Georgia.

USEPA Environmental Research Brief, 1991. *Solubility, Sorption, and Transport of Hydrophobic Organic Chemicals in Complex Mixtures*, EPA/600/M-91/009. Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma.

USEPA PEER CONSULTATION WORKSHOP DRAFT, 1998. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, November 1998, Washington, D.C.

TABLES

TABLE 1

WATER LEVEL AND SURVEY DATA SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well	Northing	Easting	TOCeL (feet)	Well Total Depth (feet)	Well Sceen Depth (feet)	Water Level BTOC (feet)	Groundwater Elevation (feet)
609002	373661.0421	2318340.847	7.83	12.0	1-11	5.49	2.34
609004	373737.5122	2318446.267	7.54	13.0	2-12	3.42	4.12
CNC25-MW01	373880.8929	2318417.096	7.90	12.0	1-11	3.58	4.32
CNC25-MW03	373506.6288	2318190.059	7.40	13.0	2-12	5.87	1.53
CNC24-MW04*	373760.4013	2318182.343	8.00	13.0	2-12	n/m	n/m
CNC25-MW05	373687.9653	2318295.297	8.02	13.0	2-12	5.46	2.56
CNC25-MW06	373677.0889	2318284.952	7.92	27.0	16-26	5.98	1.94
CNC25-MW07	373696.3178	2318103.999	7.41	13.0	2-12	6.44	0.97
CNC25-MW08	373978.0111	2318287.141	7.60	13.0	2-12	3.85	3.75

Notes:

Water level measurements were taken on September 11, 1999, and are tide-synchronous (MW06 is a deep well).

CNC25-MW02 not sampled (full of sediment)

TOCeL -- top of casing elevation

BTOC -- below top of casing

* Site 24

n/m-- not measured

TABLE 2

GROUNDWATER FIELD MEASUREMENTS SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Purge method	Volume (gallons)	Temp. (° C)	pН	Conductivity (umhos/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)
CNC25-M01	09/21/99	PP	4.5	25.9	6.50	1.04	*	0.21
CNC25-M03	09/12/99	PP	4.0	29.9	5.08	1.23	25	1.43
CNC25-M04	09/13/99	PP	3.5	28.6	6.00	2.03	< 1	1.22
CNC25-M05	09/21/99	PP	6.0	29.7	5.33	0.269	< 1	5.45
CNC25-M06	09/12/99	PP	10.0	25.7	6.47	5.72	27	1.67
CNC25-M07	09/21/99	PP	4.0	29.2	5.33	0.686	< 1	5.88
CNC25-M08	09/12/99	PP	4.0	28.7	5.36	2.40	35	1.53
609002	09/21/99	PP	4.0	26.0	6.70	4.09	3	0.11
609004	09/21/99	PP	5.0	26.6	6.45	0.98	75	1.77

Notes:

PP - Peristaltic pump, low flow technique umhos/cm - micro mhos per centimeter NTU - Nephelometric turbidity units

mg/L - milligrams per liter

* -- instrument malfunction; water visually clear

GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS SITE 25, BUILDING 1346

ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Carbon Dioxide (mg/L)	Sulfide (mg/L)	Ferrous Iron (mg/L)	Nitrite (mg/L)	Manganese (mg/L)	Nitrogen/ Nitrate (mg/L)*	Sulfate (mg/L)*	Methane (ug/L)*
CNC25-MW01	09/21/99	0.30	552	300	0.00	3.30	0.126	0.0	0.29	160	4400 6000 (D)
CNC25-MW05	09/21/99	0.60	136	388	0.11	3.30	0.000	0.4	< 0.050	40	3500 4400 (D)
CNC25-MW07	09/21/99	0.30	63	204	0.00	0.17	0.047	0.1	0.16	160	6.5

Notes:

mg/L - milligrams per liter

ug/L - micrograms per liter

* fixed-base laboratory analysis

D - laboratory duplicate

TABLE 4

SUMMARY OF SOIL BORINGS AND SOIL VAPOR SCREENING SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA [PAGE 1 of 2]

Soil Boring Location	Sample Identification	Sample Lithology	Soil Sample Condition	Soil Sample Depth (feet)	Total Boring Depth (feet)	Sample Interval Maximum OVA Reading (PPM)
CNC25-B01	25SFB010506	Sandy Clay	Moist	05-06	12	3,000
CNC25-B02	25SFB020203	Sandy Clay	Moist	02-03	12	5
CNC25-B03	25SFB030405	Silty Clay	Moist	04-05	11	19
CNC25-B04	25SFB040203	Sandy Clay	Moist	02-03	8	0
CNC25-B05	25SFB050405	Sandy Clay	Moist	04-05	11	80
CNC25-B06	25SFB060405	Silty Clay	Moist	04-05	12	1,120
CNC25-B07	25SFB070607	Sandy Clay	Moist	06-07	12	260
CNC25-B08	25SFB080304	Silty Clay	Moist	03-04	11	140
CNC25-B09	25SLB090304	Sandy Silty Clay	Moist	03-04	8	106
CNC25-B10	25SLB100102	Silty Clay	Moist	01-02	8	4,860
CNC25-B11	25SLB110203	Clayey Sand	Moist	02-03	8	1,610
CNC25-B12	25SLB120203	Silty Sandy Clay	Moist	02-03	8	4,790
CNC25-B13	25SLB130203	Clayey Sand	Moist	02-03	8	4,300
CNC25-B14	25SLB140304	Sand	Moist	03-04	8	820
CNC25-B15	25SLB150304	Sand	Moist	03-04	4	150
CNC25-B16	25SLB160304	Sandy Clay	Moist	03-04	4	250
CNC25-B17	25SLB170304	Sandy Clay	Moist	03-04	4	4,900
CNC25-B18	25SFB180405	Silty Clay	Moist	04-05	12	110
CNC25-B19	25SFB190304	Silty Clay	Dry	03-04	8	0

SUMMARY OF SOIL BORINGS AND SOIL VAPOR SCREENING SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA [PAGE 2 of 2]

Soil Boring Location	Sample Identification	Sample Lithology	Soil Sample Condition	Soil Sample Depth (feet)	Total Boring Depth (feet)	Sample Interval Maximum OVA Reading (PPM)
CNC25-B20	25SFB200405	Sandy Clay	Dry to Moist	04-05	8	2,410
CNC25-B21	25SFB210506	Sandy Clay	Moist	05-06	8	60
CNC25-B22	25SFB220607	Clayey Sand	Moist	06-07	8	0
CNC25-B23	25SFB230607	Silty Clay	Moist	06-07	12	7
CNC25-B24	25SFB240607	Sandy Clay	Moist	06-07	8	0
CNC25-B25	25SFB250506	Sandy Clay	Moist	05-06	8	0
CNC25-B26	25SFB260405	Clayey Sand	Moist	04-05	8	0
CNC25-B27	25SFB270304	Sandy Clay	Moist	03-04	8	190
CNC25-B28	25SFB280304	Clayey Sand	Moist	03-04	8	0

Notes:

Soil Borings B09 – B17 were completed for fixed-base laboratory analysis. OVA - organic vapor analyzer equipped with a flame ionization detector PPM - parts per million

TABLE 5

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL SITE 25, BUILDING 1346

ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

	Benzene	Toluene	Ethylbenzene	m&p- Xylene	o-Xylene	Naphthalene	DRO
Sample I.D.	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(mg/kg)
25SFB010506	4786 E	14787 E	4368 E	15960 E	6605 E	1515 E	290
25SFB020203	ND	ND	ND	ND	ND	ND	ND
25SFB030405	ND	ND	ND	ND	ND	ND	ND
25SFB040203	ND	ND	ND	ND	ND	ND	ND
25SFB050405	80.0	ND	40.5 J	ND	ND	54.0 J	ND
25SFB060405	ND	ND	ND	ND	ND	ND	ND
25SFB070607	175	82.5	ND	ND	ND	ND	ND
25SFB080304	ND	ND	ND	ND	ND	ND	ND
25SFB180405	ND	ND	ND	ND	ND	ND	ND
25SFB190304	3025**	54000 E**	23400 E**	96800 E**	40200 E**	5620**	ND
25SFB200405	768 E	3620 E	1240 E	3950 E	1490 E	64.8	51.5
25SFB210506	234	203	156	320	99.6	29.7 J	ND
25SFB220506	ND	ND	ND	ND	ND	ND	ND
25SFB230607	ND	ND	ND	ND	ND	ND	ND
25SFB240607	ND	ND	ND	ND	ND	ND	ND
25SFB250506	ND	ND	5.03 J	20.3 J	7.72 J	ND	ND
25SFB260405	ND	ND	ND	ND	ND	ND	ND
25SFB270304	ND	ND	ND	ND	ND	ND	ND
25SFB280304	ND	ND	ND	ND	ND	ND	ND

(**10X Dilution)

TABLE 6

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

							
				m&p-			
	Benzene	Toluene	Ethylbenzene	Xylene	o-Xylene	Naphthalene	DRO
Sample I.D.	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
25GFB010912	44.7	56.8	9.63 J	29.0	15.3	ND	ND
25GFB020811	ND	ND	ND	ND	ND	ND	ND
25GFB030811	ND	ND	ND	ND	ND	ND	ND
25GFB040508	ND	ND	ND	ND	ND	ND	ND
25GFB050811	631 E	27.6	251 E	141	52.2	180	4.0*
25GFB060811	ND	ND	ND	ND	ND	ND	ND
25GFB070912	2503 E	185	523 E	ND	50.8	30.9	3.0*
25GFB080407	ND	ND	ND	ND	ND	ND	ND
25GFB180512	ND	ND	ND	ND	ND	ND	ND
25GFB190408	46500 E**	33500 E**	5620 E**	17900 E**	6770 E**	3420**	17.3 *
25GFB200508	2780 E	455 E	183	440 E	228	251	2.0*
25GFB210608	5360 E	156	1420 E	877 E	272	295	4.20
25GFB220708	11.8	ND	ND	ND	ND	ND	ND
25GFB230912	ND	ND	ND	NĎ	ND	ND	ND
25GFB240708	ND	ND	ND	ND	ND	ND	1.34 J
25GFB250708	ND	ND	ND	ND	ND	ND	ND
25GFB260508	ND	ND	ND	ND	ND	ND	ND
25GFB270508	6.29 J	ND	ND	ND	8.90 J	ND	ND
25GFB280508	ND	ND	ND	ND	ND	ND	ND

^{*} Gasoline signature

^{** 10}X dilution

TABLE 7

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX

NORTH CHARLESTON NAVAL COMPLEX

Soil Boring / Sample No.	MTBE (ug/kg)	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzo(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene* (ug/kg)	Lead (mg/kg)
RBSL (1)	None	5	1,622	1,260	42,471	73,084	29,097	2.3E+05	12,998	87,899	210	None
CNC25-B09 / 25SLB090304	< 6	52	15	< 6	< 6	< 400	< 400	< 400	< 400	< 400	4 ^(J)	10.5
CNC25-B10 / 25SLB100102	< 800	9,100	< 1600	63,000	3,000	< 460	< 460	< 460	< 460	< 460	31,600	34.7
CNC25-B11 / 25SLB110203	< 6	6 ^(J)	< 6	14	19	< 360	< 360	< 360	< 360	< 360	66	125
CNC25-B12 / 25SLB120203	< 750	120,000	360,000	560,000	2.2E+06	< 430	< 430	< 430	< 430	< 430	217,900	26.2
CNC25-B13 / 25SLB130203	< 600	5,000	8,400	73,000	160,000	< 400	< 400	< 400	< 400	< 400	80,000	6.2
CNC25-B13 / 25SLB130203D	< 550	10,000	18,000	130,000	300,000	240 ^(J)	< 400	< 400	< 400	< 400	155,000	10.4
CNC25-B14 / 25SLB140304	< 5	7	12	13	12	< 400	< 400	< 400	< 400	< 400	60	4.9
CNC25-B15 / 25SLB150304	< 6	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	< 6	5.9
CNC25-B16 / 25SLB160304	< 5	8	< 5	< 5	< 5	< 400	< 400	< 400	< 400	< 400	4 ^(J)	6.5
CNC25-B17 / 25SLB170304	4,300	32,000	240,000	49,000	250,000	< 400	< 400	< 400	< 400	< 400	18,000	7.4

Notes:

Sample Collection Date: June 10, 1999.

⁽¹⁾ SCDHEC Risk-Based Screening Levels for sandy soil; depth to groundwater less than 5 feet.

⁽ii) Indicates the presence of an analyte at a concentration less than the reporting limit and greater than the detection limit.

D Indicates a duplicate sample.

^{*} Naphthalene includes Naphthalene (8260 value) and 2-Methylnaphthalene (8270 value) for values in bold.

TABLE 8

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well Sample No.	Date Sampled	Benzene (ug/L)	Ethyl- benzene (ug/L)	Toluene (ug/L)	Xylenes (total) (ug/L)	Naphthalene (ug/L)	Benzo(a) anthracene (ug/L)	Benzo(b) fluoranthene (ug/L)	Benzo(k) fluoranthene (ug/L)	Chrysene (ug/L)	Dibenzo(a,h) anthracene (ug/L)	MTBE (ug/L)	EDB (ug/L)	Lead (ug/L)
RBSL ⁽¹⁾		5	700	1000	10000	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	40	5	15
CNC25M-01 25GLM0101	09/21/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5	< 5	3.9
CNC25M-03 25GLM0301	09/12/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5	< 5	< 1.4
CNC25M-04 25GLM0401	09/13/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5	< 5	< 1.09
CNC25M-05 25GLM0501	09/21/99	25000	3000	35000	12000	760 ⁽³⁾	< 10	< 10	< 10	< 10	< 10	33000	< 250	7.3
CNC25M-05 25GLM0501D	09/21/99	26000	3200	38000	13000	848 ⁽³⁾	< 10	< 10	< 10	< 10	< 10	33000	< 250	7
CNC25M-06 25GLM0601	09/12/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	220	< 5	< 1.09
CNC25M-07 25GLM0701	09/13/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5	< 5	< 1.09
CNC25M-08 25GLM0801	09/12/99	< 5	< 5	< 5	< 5	< 5	< 12	< 12	< 12	< 12	< 12	< 5	< 5	< 1.3
609002 25GLX0201	09/21/99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5	< 5	1.6
609004 25GLX0401	09/21/99	< 5	< 5	< 5	< 5	< 5	< 12	< 12	< 12	< 12	< 12	130	< 5	5.5

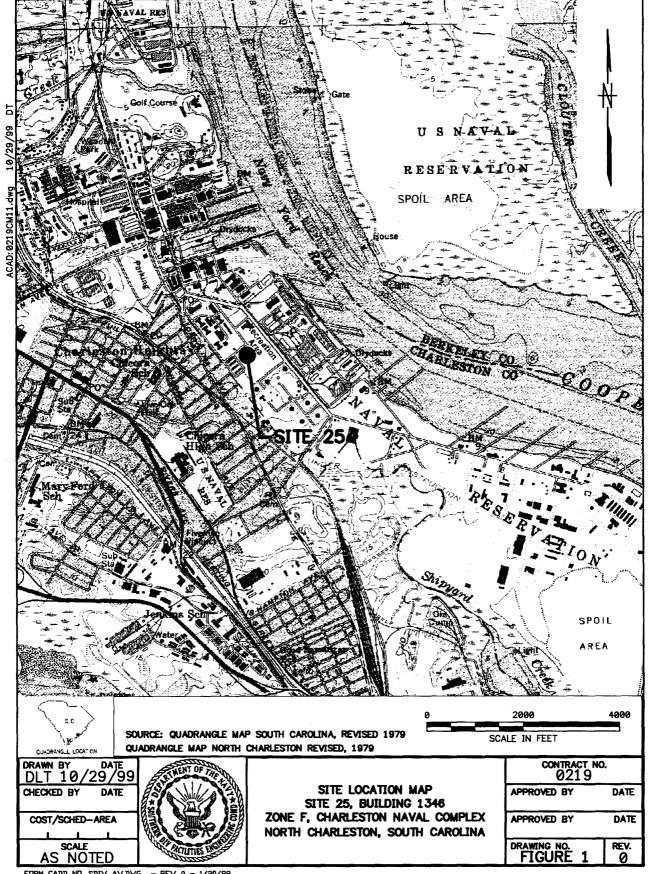
Notes:

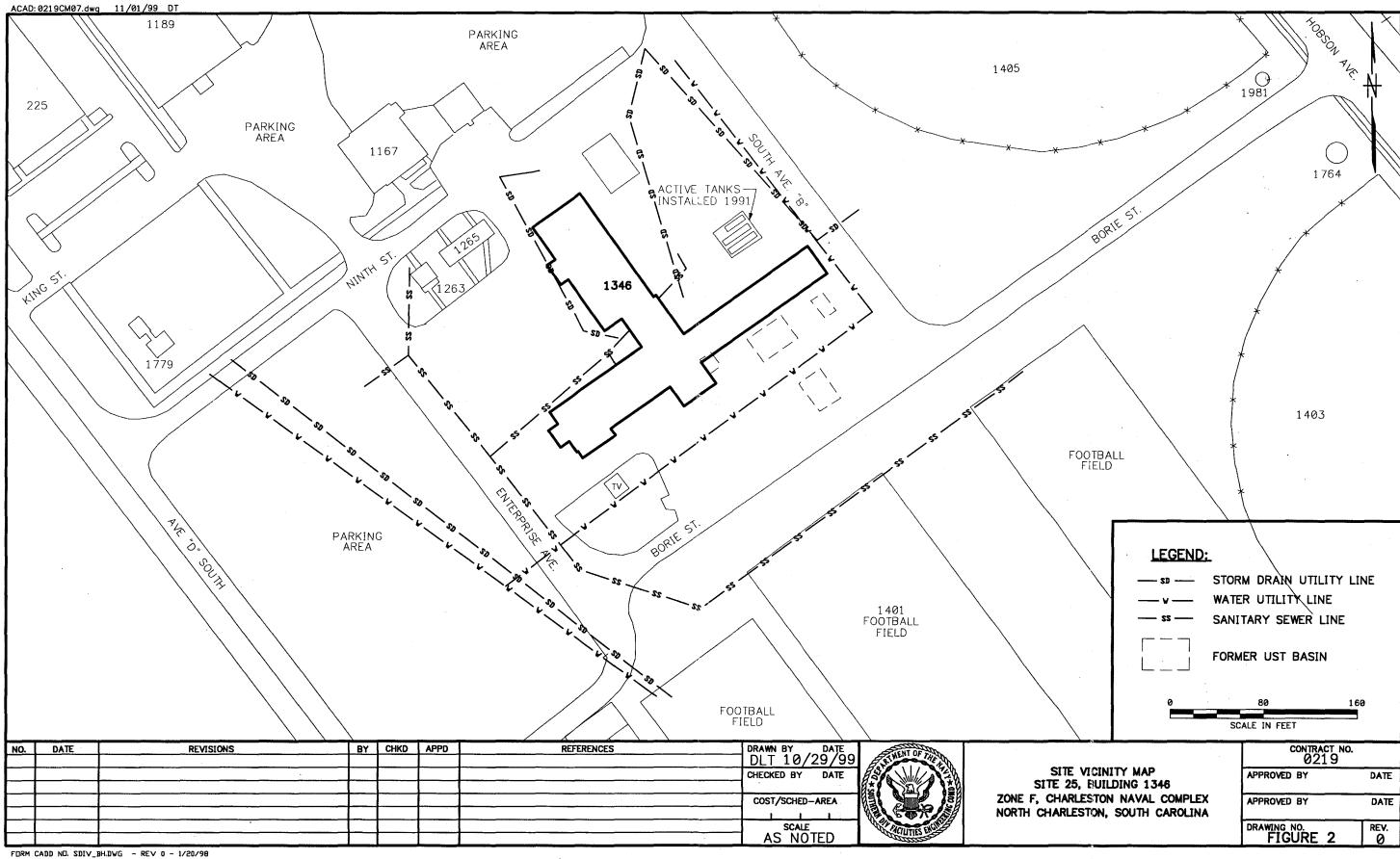
Concentrations exceeding RBSL are in bold.

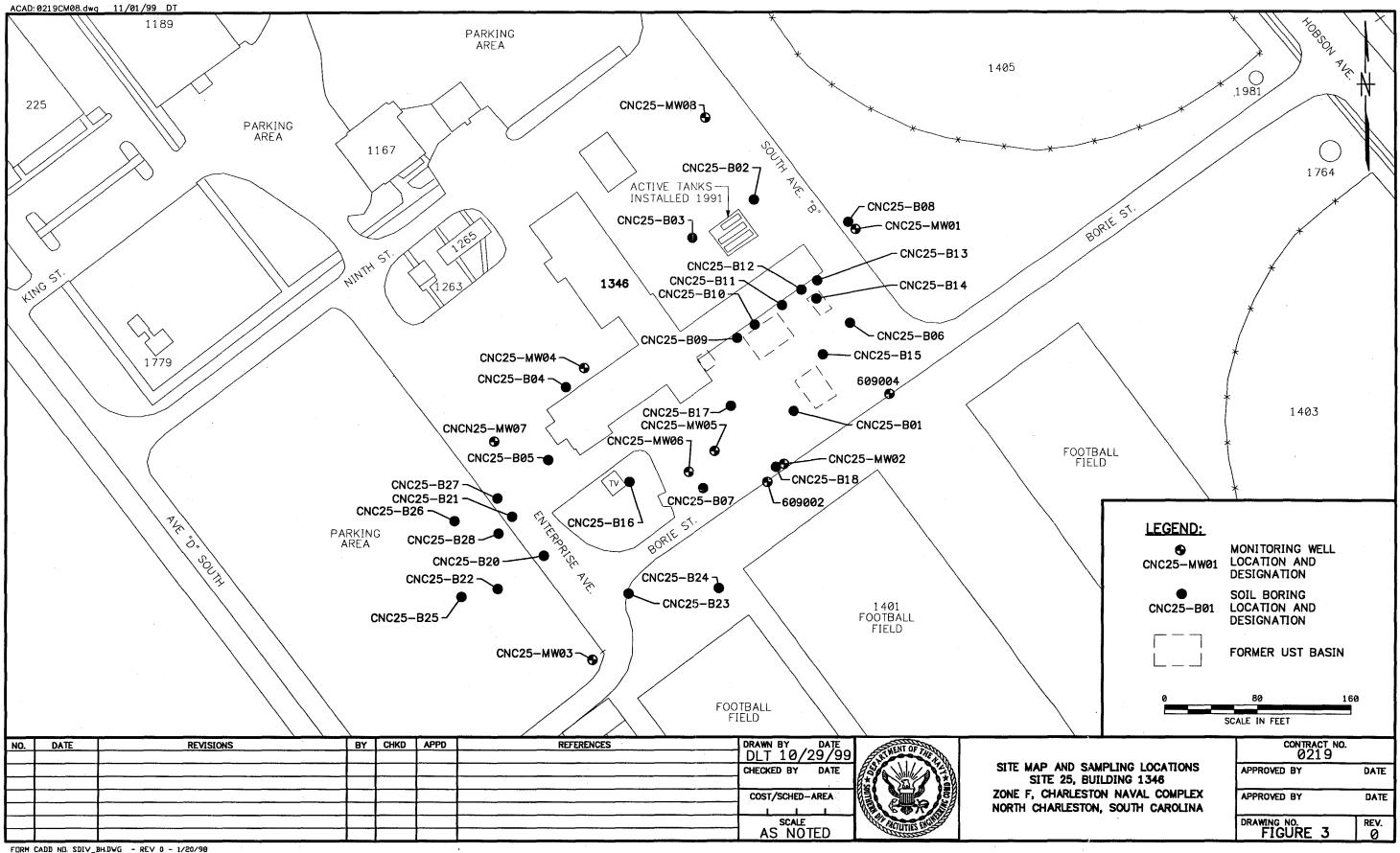
⁽¹⁾ South Carolina Department of Health and Environmental Control Risk-Based Screening Levels for groundwater.

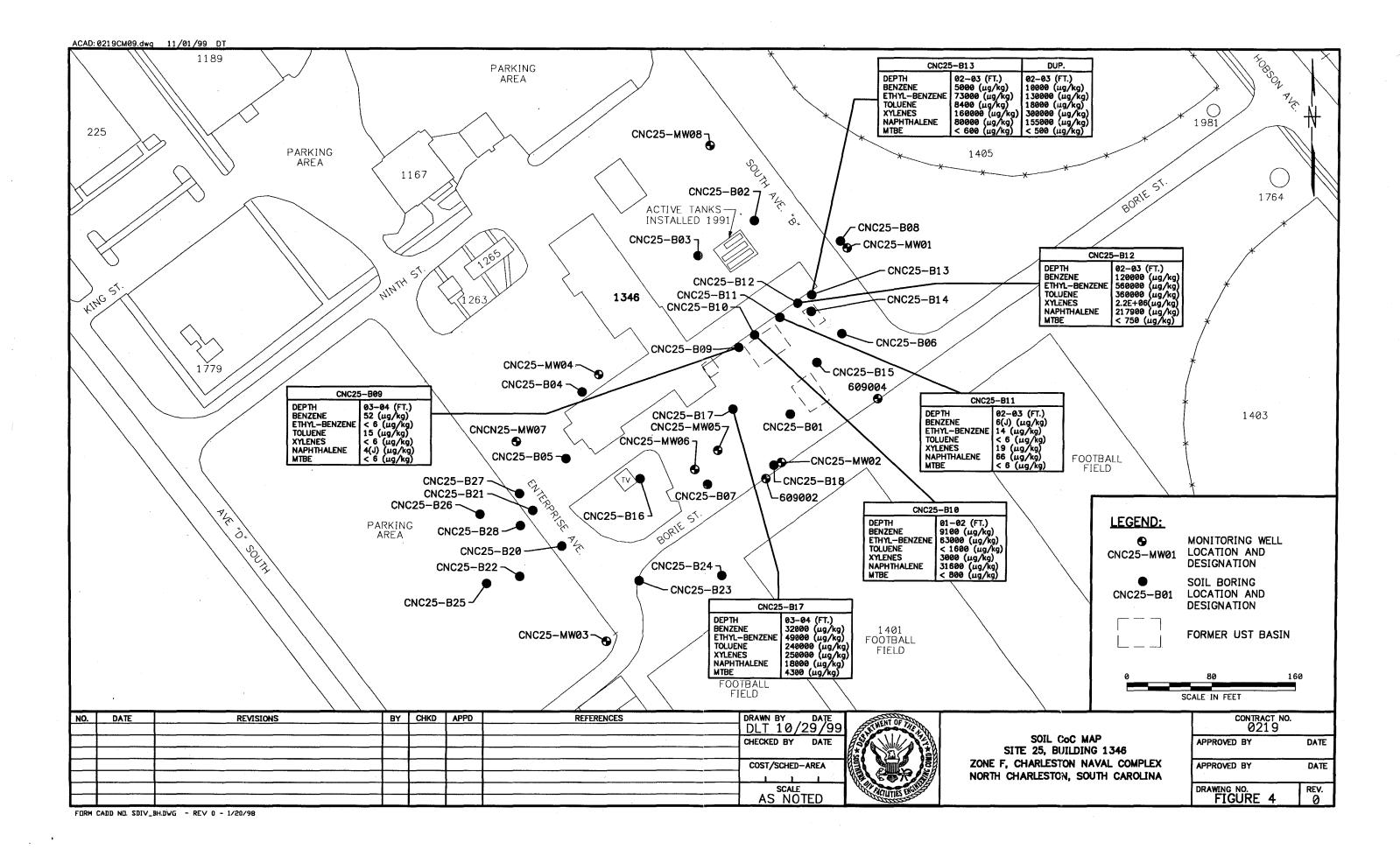
⁽²⁾ The RBSL for individual PAH CoC is 10 ug/L or 25 ug/L for total PAHs.

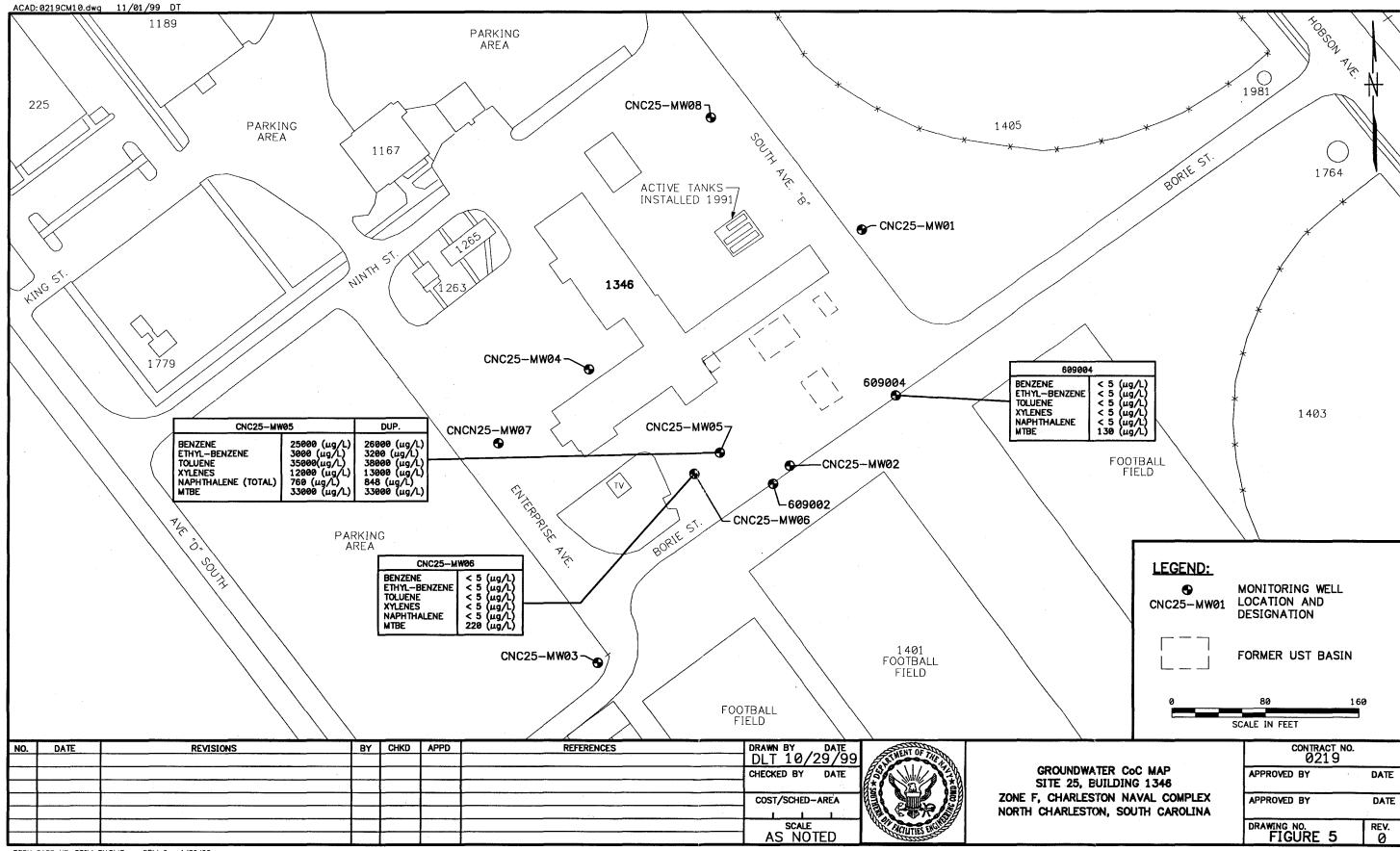
⁽³⁾ Value represents Total Naphthalene (Method 8260 value for naphthalene *plus* Method 8270 value for 2-methylnaphthalene).

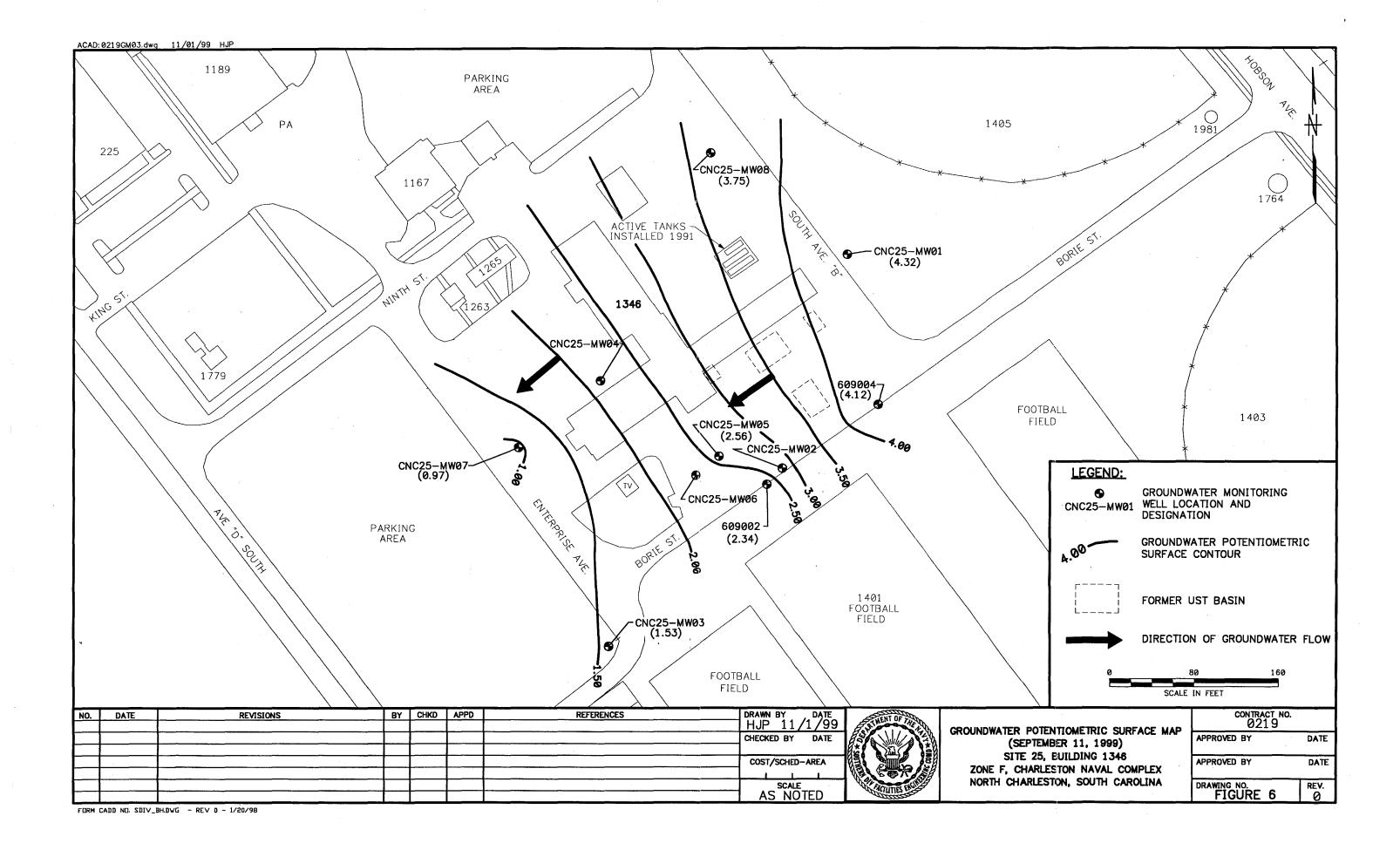

CURRENT LAND USE - POTENTIAL RECEPTORS AND PATHWAYS WITHIN 1,000-FOOT RADIUS SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA


Media (for	Exposure Route	Pathway Selected for Evaluation?	Exposure point or Reason for	Data Requirements (If pathway
exposure)		(Yes or No)	Non-Selection	selected)
Air	Inhalation	No	No volatilization to enclosed space.	
	Explosion Hazard	No	No explosion hazard.	
Ground-Water	Ingestion	No	No water supply well downgradient.	RBSLs for
	Dermal Contact	No	All water is supplied by city. However, construction	construction worker exposed
	Volatile Inhalation	No	worker could be exposed to groundwater in utility trench.	to groundwater.
Surface Water	Ingestion	No	Cooper River is 1700 feet to	
	Dermal Contact	No	the east (upgradient).	
	Volatile Inhalation	No	No complete pathway.	
Surficial Soil	Ingestion	No	No impacted surface soil.	
	Dermal Contact	No	Asphalt and concrete cover impacted soil.	
	Volatile Inhalation	No		
	Leaching to Groundwater	No		
Subsurface Soil	Ingestion	No	Construction worker in a	
	Dermal Contact	No	utility trench could be exposed to contaminated	
	Volatile Inhalation	No	soil and soil vapors. Sandy soils; groundwater is	
	Leaching to Groundwater	No	shallow: ~5 feet bls.	


FUTURE LAND USE - POTENTIAL RECEPTORS AND PATHWAYS WITHIN 1,000-FOOT RADIUS SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA


Media (for exposure)	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non-Selection	Data Requirements (If pathway selected)
Air	Inhalation Explosion Hazard	No No	No volatilization to enclosed space. No explosion hazard.	
Ground-water	Ingestion Dermal	Yes Yes	No water supply well downgradient. All water is supplied by	RBSLs for construction
	Contact Volatile Inhalation	Yes	city. However, construction worker could be exposed to groundwater in utility	worker exposed to groundwater.
Surface Water	Ingestion	No	trench. Cooper River is 1700 feet	
	Dermal Contact Volatile	No No	to the east (upgradient). No complete pathway.	
Surficial Soil	Inhalation Ingestion	No		
	Dermal Contact	No	No impacted surface soil. Asphalt and concrete cover impacted soil.	
	Volatile Inhalation	No		
	Leaching to Groundwater	No		
Subsurface Soil	Ingestion Dermal	Yes	Construction worker in a utility trench could be exposed to contaminated	
	Contact	Yes	soil and soil vapors.	
	Volatile Inhalation	Yes	Sandy soils; groundwater is shallow: ~5 feet bls.	
	Leaching to Groundwater			


FIGURES



APPENDIX A

GEOLOGIC BORING LOGS
FIELD SAMPLING DATA SHEETS

	PRO	JECT	NAME	Ξ:		Zone]	. 1		BORING N	UM	BER: (NC 25	B	Ø	ı		
			NUM						DATE:		650	19	'			•
				PANY:	<u> </u>	احک	<u> </u>	de	GEOLOGIS	ST:	<u> FA</u>					•
" Proper	DRIL	LING	RIG:					be 548 #			Brad Le-	<u> </u>	<u></u>			;
						Ŋ	MATE	RIAL DESCRIP	TION			PID/FI	D Rea	ding	(ppm) •
	Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistence y or Rock Hardness	Color	Material Class	⊧ification	ວ ທ ບ ທ ÷	Remarks	Sample	Sampler BZ	Borehole**	Driller 82**	
		1			1.0			asphal Lune Rock	£ 3"							
		2		l	į			Lune Rock	Subb							434
		3						Orange of Gra	y sandy at	¥	Rodart odor	BB	5		٥	H5%Fi]=470 H5%Fi]=2800
ווש		4	\geq	3.8							Sampled Soil from 30-4.0					15% Fil. = 2800
	1	5									ZESFBØLØ5ø6					
		6			 						Time 80811					•
		7	\angle		7.0			Greenish Gr Sand-Yckey	wy fitome	8						11 - 62/ - 1
P\$\5	†]	४			8.0			sand ycky	Moist			₹¢°	4		0	H.S.%F;1.27500 HS%F;12 2000
		9						Gray F. Sand	e wet		setscreen					HSYF;12 2000
		10									from 9.0-12.0					
		11			11.0			Clay Mo	ar Saud		755-FB410912					
الأوج		12			12.0			clay mo	ist		Times \$830					
		13			邓 .丁·											·
		14						W/L=8.4	?							
									. ·							
				ļ.		·				_						
	When	rock cr	orina, ente	er rock bro	keness.		<u> </u>			<u></u>		<u> </u>	Ш			i
	** Inclu	de mon	-			@ borehole	. Incre	ase reading frequency i	if elevated repons	e rea		-				•
**************************************	Rem	arks:			<u> </u>						. Background	(pp	m):			
	Conv	ertec	to We	il:	Yes			No	Well I.D), #:						

Page	of	
3-		

			COMF RIG:	PAINT:	(copro	oe be	5400	GEOLOGI DRILLER:		B.Lowis					<u>.</u>
Γ								RIAL DESCRIP	TION			PID/F	ID Re	ading	(ppm	1)
	Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc y or Rock Hardness	Colo	Material Class	ification	0 s c s •	Remarks	Sample	Sampler BZ	Borehole**	Oriller BZ**	
		,	\angle		٥. ر			Asphalt Lime Rock	3"		Sampled Soil from 2.0-30 1/s 255FB42428					
		2			2.0			Lime Rock			from 2.0-30°					
		3	/					Greenish gray.	sough chy	ws.he	1/s 255FBØRØRØR					١.
1		7		3.5		,		recensifica	v chaje)			3	0	•	Ø	H25 H254
I		5						rcd. to coarse	sand		moist				·	H.S.
t		6			6.0			Wshells fre	<u></u>							
Ì		>			<u>D</u>			west	<u> </u>							
3		8										4	0		0	H:0 HS
-	$\neg \uparrow$	ك										†	Ť			HS
ŀ		10														
İ		11						W/L=3	.5		set scree ~					
		10			ρo						Set Screen From 8.0'-11.0'					
ſ	•				B.T.											
											sometel white					
l											Sampled Worter	-				
ľ											25GFD620811					
											Time : 0900					
T				1									T			
t		7											 			
t												\vdash				
t												\vdash	\vdash			
f										\vdash		\vdash	-			
ŀ					·							 	 	 	 	
+										 		_	╁		-	
Ļ	When	rock co	ring ente	r rock bro	keness							<u> </u>	<u></u>		<u> </u>	j

_			RIG:	PANY:	عب ای	lum b	hi	540)	GEOLOGIS DRILLER:	<i>.</i>	B. Lews	-				-
_	1		1410.		<u></u>			RIAL DESCRIP				PIOE	in e-		(ppm	
i Ty	mple No. and pe or	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	·Soil Density/ Consistenc	Colo		· ·	U S C S	Remarks	Sample		Borehole**		
					1.0			Asphalt Lime Rock	3"							
								LimeRok								
								Green & Grey	chycr		-					1.01
		4		١.٧	4,0			f.sand-			Sampted Soi)					H.S.4/6;
Γ								Durk Gray	silte		Sampted 501) from 4.0'-5.0'					H.SG/F;
								cluy (mo			# assfbø3øyøs	-				
Γ										_	Time 80915					
卜		8		4.0												H.5% ;
r	7	Ĭ														H5W _{fi})
T												-				
`—	1				_//.0			W/L=4	.11		sitscreen					
r	寸				13.5						Set Screen from 8.0-11.0					
r	\dashv								-		710000					
H	\dashv										c 1041to					
H	+										Sampled Wifer #256FBØ3Ø811					
┝	_								_		ASGEBUSPKII					,
┝	\dashv						•				Time sogas					
\vdash	\dashv								<u>.</u>							
\vdash	\dashv		 													
\vdash	\dashv		-												\vdash	
L	\dashv												\vdash			
L	_		$\langle \cdot \rangle$					·					\vdash			
L	_						-									
L	_									_						
L	\downarrow							·								
L																

	1	RIG:		Geo	bear		RIAL DESCRIPTION	Т	B. Lewis	PID/E	ID Pa	ading	1000	
Sampi No. and Type o	(Ft.)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc		Material Classification	U S C S ·	Remarks				Driller BZ**	
				م			Asphat		Sampled Soil					
							1/me xxx		from 2.0'-3.0'					11 - W 0 1 - 1
							6"Luyer of Soundy Chay		======================================		Ø		0	H.S. 4 fil. = (H.S. 4/g;) = 1
-	4			4.0			3"Layerof Asphalt.		Time 80945					H.S.741 = 1
				Δ			4 Laper of Sandy clay							·
							2" 1' of Asphalt							
						4'	Tan f. to med sand							
	8			8.0			(wet)				<u>ں</u>		Ò	
				BIT			W/L26.7'		setscreen					
									from 5:0'-8.0'					, and a distribution of
•									·					
									Sumpled Water	_				
									# 25 G-FB.Ø4.Ø5Ø8					
									Time 80955					
							•							
						<u></u>	•							
							· ·							
														:
														·
							,							,

BORING LO	G
------------------	---

Page ___ of ___

			COMP RIG:		G		be	540 DRILLER:		13. Lewis				•
Typ	io. nd	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc		RIAL DESCRIPTION Material Classification	U S C S ·	Remarks			Driller BZ**	ĺ
					کد			Asphalt 0.5°		5				•
L								Druge agray sand	<u> </u>	Product ador				
_		4		2.3		<u> </u>		clw		(05-3)	0			H.5 W H.5 %
}				<u>```</u>						Sampled Soil from 4.0-5.0°				H.5/2
一					6.0			Gray sondy Clay. Mois	+	# 255FBØ5784905				
		·			, <u>.</u>					Time 8/007				H-54
		É		۶. ۲	7.5			Gray Sitty chayey coars	e ,	Product odor	0		0	H.S.W
L	4		\angle					sand, Moist						7,
	_							1 0 = :				·		
\vdash	_				11.0 B.T.			W/L=9.3'						
\vdash	-									cot co	\vdash			
										Set Screen From 8.0'-11.0'				
T	\dagger									- John Ci-				
										Sampled Water				
		·								ASG-FBØSØ811				
L	_									Time 0 1019				
L	\dashv													
L									_					
_													\vdash	
\vdash	+												\vdash	
\vdash	\dashv								-					
H	\neg								 					

					BORING LOG Page of Site as BORING NUMBER: CNC as BOK									-		
	PRO	JECT	NAMI NUMI						_BORING N _DATE: _GEOLOGIS		6-5-99	3ØX				-
			RIG:	гдит.		colur		5400	DRILLER:	J 1 .	B. Lewis					-
•								RIAL DESCRIP	TION			PID/F	D Re	ading	(ppm	: 1)
	Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistenc y or Rock Hardness	Colo	Material Class	sification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	
					.8			Asphalt	• 3		Sampkel Soil					
								Lime Pock			from 4.0-5.0					
					<u> </u>			GreenishGra	usi Huskiy		# 255FBØ6Ø4Ø5	-				12/
53Z		7		7.0		-		OCCCVIBACT S	7 5 7 7		Time & 1034					HZWC11=280pp HZWC11=280pp
•				,,,,					•							42 C/C1)=280 PB
		,			2.5			consiltych	Same		Mais Total					i
					6-5			Growsilty,ch	+		wet					(2/2 . 200
103Y		8		3.0	7.5			Greenishero		•	MOIST					H.5% fil = 700ppr
·								Redocrays		_						HS4/4;1=160pp
								tr. 651H (setscreen					
											from 8.0'-11.0					
					13.0	_		W/L=9.	ລ <i>໌</i>		7.475.8.					
					13.7.						Sony led water					
											# 256FBØSØ87/					
											Time 1045			•		
											· ·					
																ł I
															-	
								,					\vdash			1
						-			· · ·						-	l
											•					

Remarks:

Converted to Well: Yes No Well I.D. #:

* When rock coring, enter rock brokeness.

<u>B0</u>	RIN	IG I	LOG	Ì
				•

P	ag	e	of	
	_			

			NAM		<u>Sí</u>	te a	5			BORING N	IUM	BER: CNCRST	3 Ø	2			•
		_		BEK: PANY:		dum				DATE: GEOLOGI	ST.	6-5-59					•
			RIG:	r Alvi.				5400	-	GLOLOGI	J 1.,	B. Lauis					•
en.,								RIAL D			_	,	PID/F	ID Re	edina	(ppm	
	Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistency				ssification	U S C S .	Remarks		Sampler BZ			
		٠			-94			Aspha	At-	,.Y		Sampled Soil					
						· · · · · · · · · · · · · · · · · · ·		Brown	n san	dycky		from 6.0-7.0					10-2.0
												Time: 1/02					V
59		4		a .2				Redo	Greek	Sundy Chy							HS. 651 = 1808
				·				Tr. 08	25,17				·				H.S. 4/5:1=
																	6.0-7.0
					6.5			Green	أمحاج	us sands.							6.0'-7.0' H54%fjl=389f
62		8						clay	p	loist							HSY¢;l=
),~/ + /(~
· hatergan'																	
		12			ね.6 B.T.			ω_{l}	12	10.0	<u> </u>	set screen from \$9.0'-12.0'					
					15.1.							from \$9.0-12.0					
			\angle														
			/_									sampled Water	,				
			/_				-					from 9.0-12.0'					
			-									ZSGFBØ7Ø913			-	-	
												Times 1118				<u> </u>	
								ļ	,,,					-			
			-				<u> </u>									<u> </u>	
			-														
			$\overline{}$		·					-							
			/				-				_			_		-	
			/								_					\vdash	, ,
	* When	rock co	oring, ente	r rock bro	keness.		<u></u>			<u>'</u>	<u> </u>			<u> </u>			i .
		de mon	-			@ borehole	. Incre	ase reading	frequenc	y if elevated repons	e rea	d. Drillin Background					
Super			l to We	·II·	Yes			No		Well I.D	. 4.	Dackyround	(hh	111).	<u> </u>		l
	00114				1 03			110			, m .				_		_

							ENAL DESCRIPTION	7	3- Laurs	PID/F	ID Re	ading	(ppm	= 1)
ample No. and ype o RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Consistenc y	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole."	Driller BZ**	
				<i>j</i> , ව			Bown chay fine				1			
							Savid W/Rests		Sampled Soil					3. 77. H.S. H.S.
			ļ.	2.5		<u> </u>	Brown Sandock	<u>}</u>	Sampled Soil from 3.0-40					7
	4						Greenish Grey sill	}	\$55F13\$8\$J\$	Ł				H.S.,
				4.5		·	cky		Time 81236					H.5"
		\angle		-			No Recovery							′
	3	/	0,5											
								<u> </u>	Set Screen				_	
		/							Set Screen from 80'Ho'					
				11.0			W. ∠=7.4		5.0'-8.0					
		/		B.T.					9.0-7.0					
		/							Sample Dutoto	<u> </u>				·
		\angle							25GFB4844	_				
									Time 3/525					
						<u> </u>								
		\angle												
									·					
									·					
							·							
														٠.

PRO DRIL	JECT LING	ΓNAM ΓNUM GCOM GRIG:			site Colum	DATE:	NUM IST:	Pag IBER: CNCASI 6.7-99 R. Bruss	3¢		of _	•	
Sample No. and Type or RQD	Depth (Pt) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc	RIAL DESCRIPTION Material Classification	U S C S ·	Remarks		D Re ZII sejdujing	ading a lought	1. 174.	
	·+		2.5	1.0		Asplut .3 Subtage Productes y silly, Surely chay		52213470324					H.S. Fil=Took H.S. Fil=Nigg
	ىما . ا .			5.0		Moist. Chyraciel		Time 60858					
						tempoter.Chypronel							

"Include monitor reading in 6 Remarks:		rehole. Increase reading freq	uency if elevated reponse read.	Drilling Area Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	

							BORING LO	<u>G</u>	rag	je _		or .		•
PRO	JECT	NAM	E :	5	ite a	25	BORING I	NUN	IBER: CAIC スマリ	≥ ì ∂	d			
		NUM					DATE:		1BER: CNC251	717				- -
			PANY:		slumb	باند	GEOLOG							. +6400
DRIL	LING	RIG:					DRILLER:		R. Brawl					•
						ATE	RIAL DESCRIPTION	١		PID/F	1D Re	ading	(ppm)
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistenc y er Rock Hardness	Color	Material Classification	U S C S .	Remarks	Sample	Sempler 52	Borehoter	-220 -984D	·
		\angle		1.0			Aspholt. 03		Soundar Soil					454751-3000
							Sub base		from 1.0-2.0					H.S.W.F.il=7500 HS.W.F.il= 140
							Turacroysiltyclay		SCCYE MAINE					H5, 0/Fil= 140
	4		2.5	3.2			Tr. of Land		Time 0 0915					
				Δ			Tar. oGray chyo Son		7.10					
							Very Moist							
-						<u> </u>	VELY MOLEY	 					Н	
· ·		-						-			_			
	છ	-	<u>3</u> .0					_						
		/		及.T.										
		/,												
		\angle												
		$\overline{}$						-						
													\vdash	
									·					
		/												
							•				-		H	
		-	r rock bro					L						
" Includ		tor readin	g in 6 fool	t intervals	@ borehole	Incre	ase reading frequency if elevated repon	se rea	^{id.} Drillin Background					
Conv	erted	to We	II:	Yes			No Well I.D). #:						entropy

								RING LO	<u>G</u>	ray) <u> </u>		OI _		,
PRO	JECT	NAM	E:	S	ite a	35		BORING N	NUN	BER: CNC 25	R	11		•	
PRO	JECT	NUM	BER:					DATE:		6-7.99					-
			PANY:					GEOLOGI	ST:						•
DRIL	LING	RIG:						DRILLER:		R. Brund					•
						ATE	RIAL DESCR	RIPTION	┨		PIDIF	10 Re	ading	(ppm) T
Sample No. and Type or RQD	(FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soli Density/ Consistanc y or Rock Hardness	Color		lassification	U S C S .	Remarks	- Permote	Sampler BZ	Egre hole**	Diffler BZ*	
					•		Asphalt	• 3		Sampled Soil				·	
				2.0			Sub basi	હ		Sompled Soil from \$7.0-3.0					
		/					Br-claye	es sand.		SUZMAIQU BZ					
	4		3.3				Gurh coor	se band.							H.S. 6/F;1=1706 H.S. 6/F;1=90
•		/						1							H.S. WFil = 90
		/,		5.0		_	wet								
		/		Δ				/							
	8	/,	3.0	8.0			\	<u> </u>			_				
		/		B.T.											
		/,							_						
		/							_						
		/				_			_		_				
						-					-				
		$\overline{}$					-		_			Н		Н	
											_				
	-										 -				
											-				
					-										
								:							
			er rock bro		A barrieri	1				D-:10:-	~ ^				
Rema			ıy ın o 100	. mervais	w parehole	. incre	ase reading freque	ncy if elevated repon	SE [8	ad. Drillin Background]
							. —		-						

Converted to Well:

Yes

No _

Well I.D. #:_

							BORI	NG LO	<u>3</u>	Pag	e _		of _		
		NAMI NUMI			site.	<u>S</u>	-	DATE:		BER: (NC 25 [313	3_		•	·
DRIL	LING	COM			olum	bic	<u> </u>	GEOLOGI	ST:						•
DRIL	LING	RIG:						DRILLER:		R. Brand	_				;
Sample No. and Type or RQD	Depth (PL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density Consistence y Br Rock Hardness		RIAL DESCRIF		U S C S	Remarks	PIOF	Sampler BZ	#Orehote**	Dritter BZ-	
				1.0	-		Asphatt-	ر ک		SounderSoil					
							Sub Basa			from 20-30					
							Gray Silly Cl	of Appea		SZZ RIS Q S Q S					4-14/1
	4		2.5	3.5			Gray Silty Cl of Med-Som	D		Times 1015					H.S.V.F.1=7500 H.S.V.F.1=210
,							Gray f. to	med Sond							1/25./Fil= 310
							Tr cluy	wet							
							1								
	8		3.0	8,9			V								
				B.T											
															publike _{n pa}
										·					
								•							
				·											
		\angle													
		/,													
		/													
						<u> </u>									
	de moni	oring, ente			@ borehole	. Incre	ase reading frequency	y if elevated repon:	se rea	ad. Drillin Background					· anne
Conv	erted	to We	ell:	Yes			No	Well I.D). #:						

							BORING LO	<u>G</u>	Pag	je _		of _.		
PRC	JECT	ΓNAM	E:		site a	22	BORING I	NUM	BER: CNC25 P	113	3		,	_
		NUM					DATE:		6.7.90					-
			PANY:		cium	2)6	GEOLOG DRILLER:							- .
DKII	LING	RIG:			T .	A A TE	RIAL DESCRIPTION	_	R. Brand					
Sample No. and Type o RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/PL) or Screened interval	Soli Density/ Consistenc y			U S C S •	Remarks	Semple	Sampler BZ	Borehole	Defiler BZ**	
				1.0			Asphalt .3		Samptel Soi					
							Sub base		from 3.0:3.0'					
				٥.٢			Brown clayer Some		2027B136263					H.S%F;1=750 H.S%F;1=700
	4		2.5	Δ			Tr growel		Time: 1040					H.57 F:1= 700
			-				Great f. to med Soud							
							wet							
	8		2.8											
									Duged					
							·		g227B13a3a3					
							,							
					<u> </u>									
											·			

* When rock coring, enter rock	brokeness.			
"Include monitor reading in 6	foot intervals	D borehole. Increase reading frequer	ncy if elevated reponse read.	Drilling Area
Remarks:				Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	
	•			

							BO	DRING LO	<u>og</u>		Pag	ge _		of_		
PRO	JEC1	NAM	E:	,	site i	35	-	BORING	S NUM	IBER: CNC	351	214	Ļ		•	
PRO	JEC1	NUM	BER:					DATE:		くっつ・	19					• •
_			PANY:		wium	cic		GEOLO			<u>, </u>					, control
DRIL	LING	RIG:						DRILLE	R:	R.Ba	and					, #
				<u> </u>	<u>^</u>	ATE	RIAL DES	CRIPTION	┨			PID/F	ID Re	ading	(ppm) •
Sample No. and Type of RQD	(PL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistenc y er Rock Hardness	Color		al Classification	U S C S	Remar	ks	Semple	Sampler BZ	Boreholere	Orliner BZ**	
							Aspha	H .2		Simplad &	1100					
				1.5			Sub bo	7.46		from \$39	x4					
							1.1+6	* V E + ***	0	A CLASSILL	J 19 ~ (1)					4.5.%Fil= H.Sh.Y.Fil=
<u> </u>	73		- 2				Light G	Moist mo	<u> </u>	35513140	2004		\vdash			H Chy.
<u> </u>	4		2.8		<u> </u>		gang	Moisy		Time 105	53					11.3/Fil=
<u> </u>		/_		2.0												
	·			Δ		•	いる									
							1									
	5 >		みこ	8.0			V									
	٢		1	B.T.												
 		-												-		
<u> </u>		/_										_				
		_							_							
		,														
		_														
		$\overline{}$														
		$\overline{}$										_		_		
		_				·			-			ļ				
	`															
		-/														
									-				\vdash		-	
												_	\vdash		_	
												_				
لــــا																
			er rock bro ig in 6 fool		@ borehole.	Increa	ase reading fre	quency if elevated rep	onse res	nd.	Drillin	ο Δ	re a			,
Rem				····				,			ground	(pp	m):			

Well I.D. #:

Converted to Well:

Yes

No

							BORING LO	G	Pag	e _		of _	
		NAMI			Site_	25			BER: & CNC 25	<u> </u>	<u>31</u>	<u>S</u>	
			PANY:		Calle	na C	GEOLOG	IST:	<u> </u>				
		RIG:					DRILLER:		R: Brand				
-					N	ATE	RIAL DESCRIPTION	T	Ţ	PIDIF	ID Re	eding	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/PL) or Screened interval		Color	Material Classification	s	Remarks	- Sumpto	Sampler 82	# Borehole*	Cities age
				1.0	-		Assopratt . 3	T	Sampled Soil				
							Sub base		from 3.0-4.0'				
							Orange & Grey Fi to me		# 212113128384				
	4		2.7	4.0			Sand Tr. of growe)		Trung : 1/15				
				B.T.									
						·							
									·				
			i l	i I									

= = = = = = = = = = = = = = = = = = =		ehole. Increase reading freq	uency if elevated reponse read.	Drilling Area
Remarks:				Background (ppm):
Converted to Well:	Yes	No	Well I.D. #:	

BO	RI	NG	LO	G
----	----	----	----	---

Page ___ of ___

DF	₹	ING	RIG:	I		N.	ATE	RIAL DESCRIP	DRILLER:	<u> </u>	R. Brand	9:04	10 Res		_
ar Typ	ю.	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistenc y er Rock	Color		ification	U s C s •	Remarks	- Sample			
		-				-		Br.f. Te mad	. Served .		sampled soil				L
	·				3.0			•			from 3.0-4.0°				
		• •						cky tr. of s	y sandy		From 3.0-4.0'				L
		4		3.O	4.0			cky tr. of s	i H.		Time : 1330				
Ŀ					B.T.										
							·						Ц		L
															L
]	L
															L
	\perp												Ц		
	\perp														L
													Ц		L
	\perp														L
	\perp														L
L	_								-						
	_									:					Ĺ
<u> </u>	\bot												Ш		L
	\perp														L
_	\perp												Ш		L
	\downarrow														
	\perp														L
	\bot														L
<u> </u>	\dashv											igsqcup	Ц		L
<u> </u>	4												Ц	_	L
<u> </u>	\perp	<u></u>							•						
in	clude			r rock bro g in 6 foot		🕏 borehole.	Incres	ase reading frequency if	elevated repons	e rea	d. Drillin Background				_

							BORI	NG LO	G	P	age _		of "	
PRO	JEC1	NAMI NUM	BER:		site i			BORING N	NUM	BER: CNC 25	BA	7_		
			PANY:		Colum	عامه	<u> </u>	GEOLOGI	ST:					_
DRIL	LING	RIG:						DRILLER:	_	R. Bond	Bo			_
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (DeptivFL) or Screened interval	Soil Density(:- Consistenc	ATE	RIAL DESCRIF	sification.	U S C S +	Remarks	PION PAGE	DR Zzg zejdwiss	ading a second	(Pi
				1.0		200 181 181 18	Asphalt						,e. •	
							subbase							Γ
							Orange 261	so souch						T
3	ų į			4.0			clay tr. of	sitt.			1			T
Į,				BT.					\Box		_			r
						•								H
											\dashv			H
-									\vdash		╅			H
											+			H
				·							\top			H
									\vdash		+			H
									\vdash		╁	\vdash		ŀ
		\leftarrow							\vdash		╁			H
														ŀ
	\dashv	$\langle - \rangle$							\vdash		+-	\vdash		ŀ
		$\langle \cdot \rangle$									-			F
						-					_			F
									\square		-			ļ
		$\langle \cdot \rangle$												┞
											-			Ļ
								···-			_			Ļ
				ļ										Ļ
														L
														L
				ļ										L
														L
	le moni		er rock bro g in 6 foot	intervals	@ borehole.	increa	ase reading frequency	if elevated repons	se rea	^{d.} Dril Backgrour	ling A nd (pp			
Conv	erted	to We	ell:	Yes			No	Well I.D	#:					_

		NAM			<i>C</i>	n		NUM	BER: 25/3/8				
		NUM					DATE:	ICT.	4/14/9	2_			
		COMI RIG:	PAINT.		- Co	lu	5,5,7		120				
DKII	LING	KIG.				Lat		·	A.Draw				
Sample No. and Type o RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc		RIAL DESCRIPTION Material Classification	U s c s ·	Remarks	PIDIF		Borehole	Driller BZ**
	1					Bon	Silty Sound		Dry				
	7					Greg	Silty Clay		St. H-Dry				Γ
	3								mo is f	12	,		
	4		4/4			1			J.	70			Γ
591	5					Olive							
	6					1	V						
	7						Souly Clay		So turaled				
4	4		4/4			¥			U				
	9					0							
	10					Brr							L
<u> </u>	11					Pad 1							L
L	12		1/4			6-1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				L
										_			L
													L
													Ļ
<u> </u>													L
								-		_			Ļ
	_									_			1
										_			L
								-		_			L
-						_		-		_			L
-		/						-		<u> </u>			1
								-		<u> </u>			ļ
-										_			Ļ
<u></u>													L
** Inclu Rem	de mon arks:				@ borehole		se reading frequency if elevated repo		d. Drillin Background				

		NAM			<u> </u>	λe		_BORING N DATE:	UM	BER: <u>25 13 / 9</u> 6/19/93	_		
			BER: PANY:		Colum	Lia	•	GEOLOGI	ST:	6/19/17			
		RIG:			Strat	مناره	lu	DRILLER:		R. B. and			
							RIAL DESCRI	PTION	Πİ		PID/F	ID Res	eding (
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soli L Density Consistence 7: 90: Rock Hardness				၁၈ 0၈•	Remarks			iii ii ja jaijajajajajajajajajajajajajaj
	1							Clay		DLY			
	7					THE				T.	T	П	
~	3					t	d			V	0	П	
	4		3/4			,					1	П	
	5					14	wet			Moist,			
	4			,						Sotul	1		
	7					V			,]		75	00	,
	Ý		4/4			Com	Clayey Su	J. Todor		. 1			
	9					7							
	10									·			
	u				·								
	17		/4					:					
											_		
					•								
											_	Ŀ	
											4		
											_	\vdash	
											_		_
		$/\!\!\!/$									+	\vdash	
											+		
110/5==	mak c		e mot b	kanasa									
	de mon		er rock bro ng in 6 foo		@ boreho le .	. Incre	ase reading frequenc	y if elevated repon	se rea	d. Drill Backgroun			
1.CHI	ui NJ.									PackAinnii	a (ht	nnj.	

		NAMI NUM		-	CNE		. DAT	RING N	UM	BER: 25 1326 6/14/49			
			PANY:		Colum	», a	GEC	DLOGIS	ST:			<u> </u>	-
		RIG:		S	Colums	prol	DRIL	LLER:		R. Brown			
Sample	Depth	Biows /	Sample	Lithology	N Sol	IATE	RIAL DESCRIPTION	and the second second second	U		PIOFIL	Read	ling (ppi
No. and Type or RQD	(FL) or Run No.	6" er RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened interval	Density Consistence - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	[4. *]			s c s .	Remarks		Sampler B.Z.	
	1					<u> </u>	Asyhult w/Pas	ــــــــــــــــــــــــــــــــــــــ		Dig	Ш	$oldsymbol{\perp}$	
	7					Red.	Asphalt a/Bas			<u>l</u>	74	,	
	3	\angle					. —				\sqcup		
71 X	4	\leq	2/4			٠					120	4	
L'	5	\angle							_	Moist		\downarrow	
ļ	6		•			4	4			- 41		\perp	+
	7		4/4			سوح	Simley Cloy		_	Satural		+	╬
	8		1/4			ረ	(layery > and		-	<u> </u>		+	+
	7 10								\dashv		\vdash	\dashv	+
				ŀ								+	
	17		15			_			\dashv		H	\dashv	+
	10		74	f					\dashv		H	\dashv	+
				İ							\Box	\dagger	
				f								1	1
				·									
						_	· ·		_			4	
	}			}				-			\square	4	4
				}		_			_			4	
				}		\dashv			-		\vdash	+	+
	le monit		r rock brok g in 6 foot		borehole.	Increa	se reading frequency if elevate	ed reponse	rea	d. Drillii Background			
Come	erted -	to Wel	ll:	Yes	Tim	-	No W	/ell I.D.	#:	_	•	-	

			*					<u>B</u>	OR	NG LO			ge_	<u></u>	ot .	
PRO	JECT	T NAM	E:	,	ew a	-	•			BORING	NUM	BER: ZS BZ1				
		T NUM			- <u>v-</u>					DATE:		7/4/90				
			PANY:		Colve	ms	بالا.			GEOLOG	SIST:	1				
DRIL	LING	RIG:			Stro	top	Jour L			DRILLER	•	A Brent		-		
	1	İ	T						SCRI	PTION	1		PIO	FID R	eading	- Cons
Sample		Blows /	Sample	Lithology							U			Tse	Total	
No.	(FL)	F or	Recovery	Change (Depth/Ft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						s			K		1
Type or	Run	(%)	Sample)	Consisten					SITE ION	C	Remarks	ä	Samplame	\$:	12
RQD	No.		Length	or Screened	er or						•		1.5.	誾		鼍
1				Interval	- Rock		k							12	Felonation (C.)	S orlini bz
-					A PRODUCT	2000 PM	-				*		10.50	1		DAY R
	<u> </u>	<u>/</u> ,	<u> </u>				4	Heplus	St.	1/6 use			↓_	↓_		
	2)		Br	1	5	لسة			Dry				
	3			Horder		Red	J.Sh.	Sain	l. (lat			30	0	1,40	10
	4			ym9		197	7		1	7	T		1	П		
	'					1	十		1	- -	+	-	 			
*	3					#	╀		÷		+	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	60	0		ુ
	6					V	╀				+	Moist	-			
	7					he	<u> </u>					Sa tuntal				
	8		3/3			1		1	5	t· L						
				Į							1 1	V				
				ſ												
				Ī												
				Ī										П		
											\Box		П			
1								·					П		\exists	
	1	\nearrow		·												
				ŀ				····						Ħ		
	一			t						·						
				t							\Box		H	H	\dashv	
	\dashv			ŀ							H		Н	\Box	\dashv	
												· · · · · · · · · · · · · · · · · · ·	Н			
	\dashv			1			-						H			
				}											\dashv	
	-			ŀ							╂┼		\vdash		_	
				F									H	\vdash		-
• Whee		ring arria	rock brok				ــــــ									
) borehole.	. Incre	ase re	ading fre	quency i	f elevated repon	se read	ı. Drillir	ıg Ar	rea	,	•
Rema									-			Background			1	
Conv	erted	to Wel	li: \	/es	1.40		No			Well I.D), #·					
					10-11					***********	- · 117 · ·					

		T NAM			<u>cue</u>		•	BORING N	NUN		25 B		₽ > } ~	<u>~</u>	<u>'Z</u>
		NUM			<i>~</i> .		•	DATE: GEOLOGI	CT.	- 2	8 9	<u>; </u>			
			PANY:		Celow	لبط	<u> </u>	GEULUGI	31.	RBT	chku.				
DRIL	LING	RIG:		_~~			Stratopro			<u> </u>	<u> </u>				
Sample No. and Type or RQD	(PL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Danally Consistence		Marcella	sart atom	U S C S ·	Ren	narks		E Sampler Reserved		
	7					40	Sandy C			dra	,	T			
	7			0		rad	Sand . C	141		Ara	·	T			
	3			المرام (- 0-	ru	1'	<i>u</i> 4		7 '		0	U	O-	O
	4			And	UIM	290						ᡟ	۲		
	7			A.	you	1.11	, 1			1		╫		\dashv	
	7				7	He		" concl		mi	- 1	10	0	U	0
X	2					H	classey s	ina	-	1001	> <i>F</i>	10		\dashv	$\ddot{\mathbb{H}}$
			21							-+		+	\vdash	\dashv	-1
-	8		3/3			¥	+			<u></u>		-	\vdash		\dashv
				ŀ					_					4	_
				- 1								1		_	_
									_					4	_
				1							······································			_	
				1										_	
											•				
															٦
				ſ											
															ヿ
														寸	ヿ
				Ī										\dashv	ヿ
				Ī					_		,			\dashv	ㅓ
				-					7				H	\dashv	\dashv
				t		\neg			寸					ᅥ	ㅓ
	一十			<u> </u>		-			\dashv			\vdash		\dashv	\dashv
	一十			 		\dashv			ᆉ				\dashv	\dashv	\dashv
*When	rock co	ring, enter	r rock brok	eness.		!	•								
	e monif				borehole.	Increa	se reading frequency	if elevated reponse			Drillir ckground	ig Ai (ppi	rea m):[1	· 二
Conv	erted	to Wel	li: `	es _	Temp		No	Well I.D.	#:_						

							BC	RING	LOG	<u> </u>	Pa	ige_	4_	Of .	
PRC	JEC'	T NAM	E:	9	ton.	F		BOF	RING N	UMI	BER: CNC 25	R 2	, 3		
PRC	JEC'	T NUM	BER:		~	<u>ز بار</u>	25	DAT	E:		7 8 44		<u> </u>		
			PANY:		DEVO	bi	x/Stra	GEC	DLOGIS	ST:	Rfrank	Z_{i}	<u>な</u>		
DRIL	LING	RIG:		ha					LLER:		PErana				
							ERIAL DES					PIDA	FID R	eading	g (PP4
Sample No.	Depth (FL)	Blows /	Sample Recovery	Lithology Change	I South					U			擇		II.
and Type of	Run	RQD (%)	/ Sample	(Depth/Ft	Densityi. Consistent					С	Remarks		2	3	B
RQD	No.		Length	or Screened	, 7-; or ;	Colo		EClassificatio	Π.	S		Sample	成 能 三班	Ě	3
l	ļ			Interval	Rocks Hardness	Į.							18	Foreftole	Za jejijid 🧱
 	 									-					
	$oldsymbol{oldsymbol{oldsymbol{\mathcal{L}}}}$					10	clay	(cron	XLS)	_	12.7				
	2		_	المالا		1	4				1				Ŀ
	?			Masi		П	1.					0	O	U	U
	V					L					1	T	П		
	5			-		Con	CIL	1 Clay -	CIT	コ	- Woist	†	\Box		
						7	3(1)	y Clay -	•	\dashv	1	+-	\vdash		
1	6	$\overline{}$				٢			-	+		┼	\Box		_
7	4				-	1714		5+1	<u>-</u> +	4		0	7	υ	0
	8		4/4			¢.	Y Y			\bot	· V	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	Ш		
	q		j				U	/			Setwater				
	10					div	* 50m	Ly C/4							
	1(77		1	7	T		\Box	П		
	12		3:/4	Ì			7			十		\Box	П	ᅥ	
	1		~~~	ŀ			. •			\dashv		H	H	ᅱ	
				ŀ						+		\vdash	\vdash		_
		\leq		ŀ						+		\vdash			_
										4		Щ		_	_
										ŀ				1	
										T					٦
		\nearrow	$\neg \uparrow$	ı						十		П	一	寸	ヿ
				ŀ		\dashv				+		H	\dashv	ᅥ	
				}						+		$\vdash \vdash$	\dashv	닉	\dashv
				}						+		╁┤	\dashv		-
		$\langle \cdot \rangle$		-			· · · · · · · · · · · · · · · · · · ·			\bot		$\vdash \vdash$		4	
	<u>.</u>	/								\perp		Ш		_	
]					· ·				
		•	rock brok				•				25. _31.5				-
Rema		or reading) in 6 foot i	intervals (g borehole.	Incres	se reading frequ	ency if elevate	d reponse	read.	Drillir Background	ig Af 'nn'	ea m).[th.	\neg
	•	1-141	1.		٠					<u> </u>	2.0.g. 04/10	~P*	r	\pm	
CONV	ened	to Wel	l: `	Yes -	(up		No	w	ell I.D. i	#:					
															/

							<u>B</u> (DRI	NG LO	<u>G</u>	ra	ge_	+-	of.	
PRO	JFC'	T NAM	E:		CN	ے	•		BORING N	NUN	BER: 25 82	24			
PRO	JEC.	T NUM	BER:						DATE:			79			
_			PANY:		olum				GEOLOGI DRILLER:	ST:	0 . 0				
DRIL	LING	RIG:	,	- han	day		SOLAL DEC			1	Rondy Ro				
Sample	Depth	Blows /	Sample	Lithology			RIAL DES			U		POI	FID R	ading	(ppm)
No.	(PL)	6" or RQD	Recovery		# Soft		A STATE OF THE STA	SECTION SECTION AND ADMINISTRATION OF THE PERSON AND ADMINISTRATIO		s			Ŋ		
Type or		(%)	Sample Length) or	Consisten	Colo				C S	Remarks		A PARTICULAR SECTION	Boreholem	28 1
				Screened	THE PARTY OF THE P					•		1.5		B	
					Hardness								J.		37.8
	١			/		br	Gand				dru				
	2			232		4_	clause	,, 5	Gad		noist				
	3			har	rec	1/10-	claye	en co	and.		1	0	0	0	0
	4			2	h	Hu	7	75	1.17		-		П		П
	5					IT	7				7			\exists	一
	4				<u> </u>	+	Sun	0. 1	lay		1		â	0	0
1	7					-	Jan	my c	109		t	0	٩	\dashv	
	4		3/3			 	 	· · · · · · · · · · · · · · · · · · ·			Sutuntil	\vdash	\vdash	\dashv	\dashv
\vdash	. 7		/5			¥					De touth	\vdash	\vdash	ᅱ	\dashv
						_						\vdash		\dashv	\mathbf{H}
										{		H			-
\vdash										\dashv		\vdash		\dashv	\dashv
		$\langle \cdot \rangle$		}									\dashv	_	_
				ŀ								\vdash	\Box	_	4
				}						_		\sqcup		_	\dashv
				.]										_	_
				}						_				4	_
		\leq		-					·	_		Ш		_	_
		$\langle \rangle$										Ш		\bot	_
				1			•]					
												П		T	
									4			П		1	
		•	rock brok		.	L					5110				_
Rema		ini sesaiv(j m o 100t i	mitervals (g Dorehole.	incres	se reading freq	uency if e	levated repons	e read	i. Drillin Background			1	/

Well I.D. #:

Converted to Well:

Yes

No

		NAME		en	1		BORING N	NUM	BER: ZŚBZS			_	
		COM			Rolem	1.	DATE: GEOLOGI	ST.	+124/9/				
		RIG:	73171.		5-tu			• 1.	1. hunt				
							RIAL DESCRIPTION	1		PIO/I	FID Re		(ppm)
Sample No. and Type or RCIO	Depth (FL) or Run No.	Blows / ET or ROD (%)	Sample Recovery / Sample Length	Lithelogy Change (Depth/Fi.) er Screened Interval	Sell Density/ Consistenc			U \$ C \$.	Remarks	Semple	Sampler BZ	Borehote**	Orthor B.Z**
				,)			As put affect		Duj				
	2			ferr		Bm	Souly Lill						
	3			47									
	Ú					Can	1 Saul Clan		L				
31	5			•		بالزو	, ,	٠	Moist	0	ව	о <u> —</u>	١
2	6					سو							
	4					المال	Clayon Sond		Sy tentel				
	8		414			إسن							
			·						·				
				i									
.													
										_			
										1			
										╄		_	
										╀-	┼	-	\vdash
]				-		\dotplus	╀-	-	\vdash
				1						4	┼-	├-	\vdash
						 		_		┿	╀╴	 	\vdash
				1		_		_		╀	╀╌	├	Н
L]		_		-		+	╁	╀╌	\vdash
			<u> </u>	4		 		╁		-	+-	\vdash	\vdash
<u></u>		/		4				┼-		+	+	+	+-
	<u></u>					1					1_	<u> </u>	ب
* Whe	un rock : Lude mo	coring, en	ter rock bi ing in 6 fc	rokeness. Iot intervali	a @ borehol	e. Inch	sase reading frequency if elevated repo	188 FB	ed. Drill Backgrour	ing /			}
₽er	narks	·								را ب ا	(۱۱۱۰ ۰	4	_
Сог	verte	d to W	ell:	Yes	Tuy	4	No Well i.	D. #					

		NAM		CI	re			IUM	BER: 25/326				
		NUMI			o leans		DATE: GEOLOGIS	et.	7/24/94		 .		
		RIG:	~~!!!.		tre to			51.	1.13	-			
							RIAL DESCRIPTION						==
Sample	Depth	Blows /	Sample	Lithology	14	K I E	RIAL DESCRIPTION	U		-TUF	ID Re	ading	(bpm)
No. and Type or RQD	(FL) or	RQD (%)	Recovery / Sample Langth	Change (Depth/Pt.) er Screened interval	Consistent	Color	Material Classification	S C S .	Remarks	Semple	Sampler GZ	Borehole**	Ormer BZ**
		/					Asplultaflows f.						
	2	/				Bin	Clayer Sun		Diy				
	3	/								_	Ŷ	·	
4	4	/						H	Woist	0	0	0	٥
\	7					ed ed	10 de 10		So to the				-
	9					7	Silty Clay		Satruto				-
	+		4/4				Pay layer		**				-
			* 7			"	<u> </u>						
		/								_			
		4								_			
		/		ļ					,	_	_		Н
<u> </u>		/								-	├-	_	H
-		/		1				-		├	\vdash	-	H
 	-			}				-		\vdash	T		H
-	 	/						1			T	1	H
			1										
]									Ц
]						L	1	_	Ц
								1		1	1	_	\sqcup
		/			<u> </u>			_		+	\downarrow	1	arpropto
	<u> </u>				<u> </u>	<u></u>					1_		لــا
" ind	ude mo	nitor reed	ter rock bi ling in 6 fo	oceness. Iot interveli	@ borehol	e. Inch	nese reading frequency If elevated repo	nae re	ed. Drilli Background				/
	narks									- (P	J111)	·iÀ	
Cor	verte	d to W	ell:	Yes	Tuy	<u>Z</u>	No Well I.	.D. #					

		NAME		en	حر		BORING N	IUM	BER: 25/327 4/3/94				·
		NUME			(con Si		DATE: GEOLOGIS		4/3/94				
		RIG:	ANT.	- (ce	into A		DRILLER:	J1.	1. Brund				
		7.10.					RIAL DESCRIPTION			PITVE	ID Pa	adino	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Charige (Depth/FL) or Screened Interval	Soil Density/ Consistenc			⊃ # ⇔ # •	Remarks	Semple	Sampler BZ	Borehole**	Driller BZ**
	{						Asplut - /bus						
	2					Rd	Clayey Som		Diy				
, ^	3					L				ĦO	0	25	0
7	ч					di	Such Clay-S	4.1	l L	10	0	ZS	0
	5					Per.	Clargey Sunt	ì					
	6					كعق			Moist				
	7					ل			Sutunte				
	4					~ v	Silty Soul.		J				
							1						
				i									Ц
1									7				Ц
		\angle										i	Ш
								_					Ц
													Ц
		/											
		/											\square
		/				·					_	_	\sqcup
		$/\!\!\!/$										_	Н
											_	 -	\vdash
							· · · · · · · · · · · · · · · · · · ·				_	_	Н
		/						-		_	-	-	H
		$\langle - \rangle$								-	_	-	H
		//						-		_	 .	-	H
		//								_	-	-	H
* When	rock co	oring, ente	r rock bro	keness.				<u> </u>			<u> </u>	<u> </u>	Ш
** Inclu					@ borehole.	Increa	sse reading frequency if elevated repons	se rea	d. Drillin Background				
Conv	erted	to We	ii:	Yes	Turp)	No Well I.D). #:				\	

PRO	JECT	NAME	: :	CH	<u>0e</u>		BORING N	IUM	BER: ZS BZ	` `			
		NUM					DATE:		8/3/49				
			PANY:	<u> </u>	tens	in,	GEOLOGIS DRILLER:	51:	- 2 /c - 0 -				
DRIL	LING	RIG:						,	A. Brond				
		Blaue /	Sample	Lithology	N.	ATE	RIAL DESCRIPTION	ט		PIDIF	ID Re	ading	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Recovery / Sample Length		Consistenc y	Colo	Material Classification	s c s •	Remarks	Sample	Sampler BZ	Borehole**	Driller 82**
)						Asplat			L			
	2					Red	Chayer Fail		Pi4				
V	3								:	0	b	<i>ن</i>	0
N	ч			İ									
	5					J.	\downarrow	·	J				
	6					W.			Saturd				
	7					na.	Soul and						
	4					Zur	Silty Soul.						
													П
										厂			П
										1			П
							-						\Box
										†			П
											T	-	
										T	T		П
										T			П
										1	<u> </u>		
										<u> </u>		 	
				!			•			T	†	一	H
										T	一		H
			r rock bro					<u> </u>	:			<u> </u>	
™ Inclu Rem		itor readin	ng in 6 foo	intervals (@ borehole.	Increa	se reading frequency if elevated repons	se rea	d. Drilli Background			4	
Conv	erted	to We	ll:	Yes	Trey		No Well I.D). #:					

					. 49	<u>''</u>
Project Site Name Project No.: [] Surface Soin Subsurface [] Sediment [] Other: [] QA Sample	l Soil	CNC25 021	9		ocation: 399 By:	8490344
GRAB SAMPLE DAT	A: `					
Date: 6-7-7		Depth	Color	Description	(Sand, Silt, Clay, Moi	sture etc.)
Time: 0858 Method: DPT Monitor Reading (ppm	→): <i>1</i> 06	<u> </u>	Redd Gray		oz Sandy, S	
COMPOSITE SAMPL	E DATA:					
Date:	Time	Depth	Color		(Sand, Silt, Clay, Moi	sture, etc.)
6-7-99		0	,3	Asphal		
Method:		7.3	/. ને	Sub Ba	<u>se</u>	
DPT		1.0	5.0	Red & Grew	sitty Sandy	Clar,
Monitor Readings		5.0	5.0	14	1 12 '	Moist
(Range in ppm):		6.0	8.0	605 12 100	~ chr sando	score) West
W/ F:1=120				1		
W Fil = 14 ppm						
SAMPLE COLLECTION	ON INFORMA	TION:		<u> </u>		
	Analysis		Container Requ	uirements	Collected	Other
72/1		DB	Yence		6-7-99	
Le	e.D.			, 30 C		1
PA	H		1-403	Tar		
			,	9		
				<u> </u>		
						1
						
				······································		
OBSERVATIONS / NO	OTES:		<u> </u>	MAP:	l	
			-			
1						
1						Í
	Total 1	Depth = 1	2.0'			
Circle if Applicable:			_ , ,	Signature(s):		
MS/MSD	Duplicate I	D No.:]	(دو	1
				1-0	XX	·

					Pag	eof
Project Site Nan Project No.:	ne:	CNC 25	9	Sample ID Sample Lo	cation: RIS	5 B199102
[] Surface So	il .	*		C.O.C. No		
Subsurface			- -	•		
[] Sediment				Type of Sa	•	
[] Other:	Tuna				oncentration oncentration	
[] QA Sample	e Type:		•	_ Unignic	oncentration	
GRAB SAMPLE DAT	rA:					
Date: 6-7-9	9	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Time: 0915		10-20	7, 6	Sitterel	arti- Som	ນ -
Method: DF		1.0-2.0	Tun somy	0.117 01		~
Monitor Reading (ppn COMPOSITE SAMPL		1		<u> </u>		
	7	Do-Mb.	Color	Description	/Sand Silt Clay Ma	inture etc.)
Date: 6-7-99	Time	Depth	Color		(Sand, Silt, Clay, Mo	isture, etc.)
	0908	-0	1.0	Hisphand		#=
Method:		3	7.5	Sub by		
		7.0	3.5	to landon	y Sitty chy To	· Janch
Monitor Readings		3.5	7.6)	KIN & CLEEN	Chyosand.	vary Moisy
(Range in ppm):						
1/4 Fil = 75700			<u> </u>			
WF:1=140				Ketol		
				<u> </u>		
SAMPLE COLLECTI		TION:	Containes Des		College	T Other
स्र	Analysis EX / E	013	Container Req		6-7-99	Other
 	AH	<i>v</i>		jar		
7.	eud		1-402		V	
			<u> </u>			-
·						
						
OBSERVATIONS / N	OTES:			MAP:		
						•
	Tit 1	Depth:	- 8 cs			
Circle if Applicable:	1,776	1 126/2115.		Cianatura/a)		
MS/MSD	Dumiliant !	D No.		Signature(s):		
MIS/MISU	Duplicate I	n 40".				

Page CNCZ Sample ID No.: act B//dad3 Project Site Name: Sample Location: 311 Project No.: Sampled By: [] Surface Soil C.O.C. No.: Subsurface Soil □ Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: Migh Concentration GRAB SAMPLE DATA: Date: Color Description (Sand, Slit, Clay, Moisture, etc.) 6-7-99 Depth Time: CEP0 cluper sand, 2.0-3.0 Method: DPT Brown Monitor Reading (ppm): 16/0 COMPOSITE SAMPLE DATA: Depth Color Description (Sand, Silt, Cizy, Moisture, etc.) 6-7-97 O Method: DPT Brown Clayer Land Gray Goarse sauch Mois Monitor Readings **3.0** (Range in ppm): 8.0 50 W/ F:1=7\$100 W/F:1=90 SAMPLE COLLECTION INFORMATION: Analysis Container Requirements Collected Other BTEX /EDB 4. Encore 1-1 05 jou 1-4 02 Jar OBSERVATIONS / NOTES: MAP: 0-4 = a.a Rec. 4-8 = 3.5 Total Depth 120 7 Circle If Applicable: Signature(s): 4.00 NJH MS/MSD **Duplicate ID No.:**

Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: C.O.C. No.: [] Surface Soil Subsurface Soil Type of Sample: 1) Sediment [] Low Concentration [] Other: **High Concentration** [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Color Date: 6-7-99 Depth Time: 1015 Silty Cky Ykyas of Soul 2.0.3.0 Method: DPT Gra) Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Time Depth Color 5-7-99 · 3 10/3 O 1.0 ,2 Method: DPT troky Waxers of med Soul 1.0-3.5 GRAV 3.5-8.0 Monitor Readings Grak (Range in ppm): 4/ Fil = 75000 WF:1= 210 SAMPLE COLLECTION INFORMATION: Container Requirements Analysis Collected Other ISTEX/EDB 2-7-94 4 - ENCOR 1- 402 jar 1-402,101. Grain Size 2-13202 iars OBSERVATIONS / NOTES: MAP: Rec 0'4'=2.5 4'-8 = 3.0 Gran Size from 2.0-3.0' & 7.0'-8.0' Total Depth. 12.0° Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Project Site Nam	e :	CNCSE	•	Sample (C	No.: 3552BI	36283
Project No.:		6	219	Sample Lo	ocation: 1313	
•				Sampled I	By: RF	
[] Surface Soi	ı			C.O.C. No		
Subsurface						
	JUII			Tune of S	omnia:	
[] Sediment				Type of Sa	•	
[] Other:	_			_ **	oncentration	
[] QA Sample	Туре:			High C	Concentration	
GRAB SAMPLE DATA	A:				·	
Date: 6-7-9		Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Time: 1040)				c 0	1
Method:		2.0-3.0	Brunn.	Chyer	Some Tr. G	Locion
Monitor Reading (ppm	<i>y.</i>	10,				•
COMPOSITE SAMPL		<u> </u>	<u> </u>			
			0.1	Baradada	After the Class No.	leture etc.)
Date: 6-フ-97	1038	Depth 7	Color		(Sand, Silt, Clay, Mo	isture, etc.)
	10.20	03		Asphal	<u> </u>	
Method:		13-10		Subb	ase	
DPT		1.0-3.0	Brown	Br Cky	y Sand Tr. 5	rove
Monitor Readings		3.0-8.0	Grav	Cours C.1	inch Sand	625
(Range in ppm):						
-% Fil -75000						
. .						
7F.1=700				<u> </u>		
SAMPLE COLLECTION	N INECORM	TION				
OAM LE GOCCEGIA	Analysis	1.70(1.	Container Req	uiremente.	Collected	Other
12		600				
	TEX	RUU	8-Ence		5-7-99	
	PAH	•	3-405	: jars	11	
	read		1 2-4 "	11	<u> </u>	
	TPH_		7-4	h 13		1
					-	
C			†			+
						+
<u> </u>						
			<u> </u>			
			1			1
OBSERVATIONS / N	OTES:			MAP:		
Bee 0-4	123	~ _				
				1	4	
1 4-8	· = 3.	8		ł		
· -						
]		A 1	, , , , -			
1	Total	Depth =	=16.0	1		
	1 - 7 - 00	1 - Da.		Slaggeturnich		
Circle if Applicable:		ID No.		Signature(s):		
MS/MSD	Duplicate		•	1 1 2	ce 11.11	j
	1 253	shbis abays			se Hall	:

Page___ of ___

Project Site Name Project No.: [] Surface Soit Subsurface [] Sediment [] Other: [] QA Sample	il Soil Type:	CNCas	3	Sample Lo Sampled I C.O.C. No Type of Sa [] Low C	By: 18 12	1 0384
GRAB SAMPLE DAT		·				
Date: 6-7-99	<u> </u>	Depth	Color	Description	(Sand, Silt, Clay, Mois	sture, etc.)
Time: 105.5 Method:		3.0.4.0	righten	Fine to	med. Sande	
Monitor Reading (ppm			<u> </u>			
COMPOSITE SAMPL	E DATA:			T		
Date: 6-7-99	Time	Depth	Color	 	(Sand, Silt, Clay, Moi	sture, etc.)
6-7-77		0-02	Black.	Asph	N	
Method:		1.2-1.5	Gray	sub b	V.C.	
DPT		1.5- 5.0	LANTGRAY	F. to n	red sand.	Moist
Monitor Readings		5.0.8.0	12 11	1	11 15	wet
(Range in ppm):						
1/6F1=900						
WF1-80						
• •	<u> </u>					
SAMPLE COLLECTION	ON INFORM	ATION:				
	Analysis		Container Req		Collected	Other
16		eub	4-Enc		6-1-77	
	PAH		1.402		 	
	trid		1-402	iac	_ V	<u> </u>
					 	
			 			<u> </u>
						
OBSERVATIONS / N	OTES:			MAP:		
Rec. 0'-	4'=3	.8				
		* >				
	rotol	Depth =	80			
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate	ID No.:				·
L						

Page___ of ___

Project Site Name Project No.: [] Surface Soin Subsurface [] Sediment [] Other: [] QA Sample GRAB SAMPLE DATA	il Soil Type:	CNC 25 p2		Sample ID No.: 2533150394 Sample Location: 1315 Sampled By: 17 P C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			
<u> </u>		Depth	Color	Description	(Send, Silt, Clay, Mo	intura etc.)	
Time: /// Method: DP/ Monitor Reading (ppm): 1.50)		Daregeren				
COMPOSITE SAMPL	E DATA:						
Date:	Time	Depth	Color	——————————————————————————————————————	(Sand, Silt, Clay, Mo	isture, etc.)	
6-)-39		6-0	Black	Asehold	-		
Method:		1.9		Sub to	45°C		
DPT		1.0-4.0	Orange 2 Gray	Fine to	Med Sand -	Tr. growel	
Monitor Readings							
(Range in ppm):	 						
1/6F1=190							
f' .							
WF,1=40							
SAMPLE COLLECTION	ON INCORMA	ATION:	<u> </u>	<u> </u>			
OAMP LE COLLECTION	Analysis		Container Requ	·inemanta	Collected	Other	
		EDB			Collected	Other	
	PAIN T	EUG	1-40Z				
	7.0		1-405			1	
	0C/PC	٠٠.	2-402				
	-0//-0		1 2 3 2	100.			
					 		
						1	
·						1	
·							
						1	
OBSERVATIONS / N	OTES:			MAP:			
Rec 10-1	Y=2.	7		Diperl	.The Toc.	/FOC	
				onl)	. The Toc,		
Total Dep	批 4.	0,					
Circle if Applicable:				Signature(s):			
MS/MSD	Duplicate	ID No.:		1			
	Tocke	ersee Almora	CHAE ASI				

Page_

Sample ID No .: 255LB 16 2304 Project Site Name: Sample Location: B 16 Project No.: Sampled By: C.O.C. No.: 1 Surface Soil [] Subsurface Soil Type of Sample: [] Sediment [] Low Concentration [] Other: [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Color Depth sandy clay Tr. of Sitt Time: 1335 3.0-4.0 prongersony Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Description (Sand, Silt, Clay, Moisture, etc.) Time Color Depth 67-97 fine to meel sand 1330 0-20 Brown randroker Tr. of Sitt-2.0-4.0 Method: Oravice d Good DPT Monitor Readings (Range in ppm): WF1=460 4/F:1=210 SAMPLE COLLECTION INFORMATION: **Container Requirements** Other Analysis Collected 4- Encure - 402 Jan OBSERVATIONS / NOTES: MAP: Rec 0-4'=3.0' Total Depth = 4.0° Circle if Applicable: J. D. N.W MS/MSD **Duplicate ID No.:**

Page__ of ___

The property of the second

Project Site Nan Project No.: [] Surface So	il .	CNC 2.	19	Sample ID No.: SIND 6364 Sample Location: RID Sampled By: C.O.C. No.:				
Subsurface Sediment Other: QA Sample				~	ample: Concentration Concentration			
GRAB SAMPLE DAT	A:							
Date: 6-7-9		Depth	Color	Description	n (Sand, Silt, Clay, Mo	isture, etc.)		
Time: /35 Method: DP Monitor Reading (ppr	T	3.0:4.0						
COMPOSITE SAMPI	E DATA:							
Date:	Time	Depth	Color		(Sand, Silt, Clay, Mo	isture, etc.)		
6-7-99	1353	6-62		Asphal				
Method:		12-1-0		Sub ba	<i></i>	1		
DFT.		1.0-4.0		Grance	Gray Sondy Cl	as tr.silt		
Monitor Readings				1				
(Range in ppm):								
1/2 Fil =>5000								
W/Fil= 100	}							
SAMPLE COLLECT	ON INFORMA	TION:						
	Analysis		Container Re	quirements	Collected	Other		
द्रा	EX /F	DB	4. Enco		ムーフ・ラナ			
	#77		1-402		 			
	eccl_		1-402	Jak	V			
	•							
					 			
OBSERVATIONS / N				MAP:				
Rec 0'-								
	rectal	Death = 4	٠.٥					
Circle if Applicable:				Signature(s):	3111			
MS/MSD	Duplicate	ID No.:		1 8	ællet			

Page_

Project Site Project No.:		Z 200	F				Sample	Location: d By:	25GLM CNC.	1616 25 M	<u>ال</u>
Monito Other	stic Well Data ring Well Data Well Type: mple Type:						[] Low	No.: Sample: Concentra Concentra			
SAMPLING DA											
Date: 4-31		Color	pН	s.c.	ı	mp.	Turbidity	DO	Salinity	Oth	
	<i>\$5</i>	Visual	Standard			rees C	NTU	mg/l	%	N.	A.
Method: Dec	Staltic	clear	6.50	1.04	22	<u>.~</u>	-10	0.21			
	21.66	Malaana	-11	s.c.	Ŧ	- (0)	Turbidity	DO	Salinity	Ott	
	21 99	Volume	рн 6-4¢			p. (C)	-10		Sannity	- Cu	101
	istaltic	Initial		.798				1.04		 	
Monitor Reading		1	6.66	.796			-(0	2.54			
1	meter & Material	2		0.94		0,0	10	0.48		 	
Type: 🔎	PVC	3	25.0	0.99	α	3.3	-10	79.7		<u> </u>	
Total Well Depti	n (TD): 11,62	J	2.50	1.04	25	9	-10	16.0			
Static Water Lev	vel (WL): 1.23					•				<u> </u>	
One Casing Vol	ume(gal/L): 1.6				5	19					\
Start Purge (hrs): 1045			,	H						7
End Purge (hrs)	: 1000				7	J					
	e (min): The min										
	d (gal/L): ~4 5	1.1								 	
	ECTION INFORMA	TION:		<u> </u>	<u> </u>						
	Analysis		Preser	vative			Container R	equirements		Colle	cted
701	bolotile s		HCI.	40C	(3)	40 m	_ vials	>	VC	5
Disso	Wed Meth	ane	HCI	MaC.	(35	40 m	L Vial		1/1	
Lead			HNO.	1/20	(7	250	nl plas	stic		
PAHS			LPC.	~ /		52	1	Ambe	<u></u>		
Arions	<u> </u>		400	-		77	From	علميار	<u>stic</u>	<u> </u>	M_
			<u> </u>					·		ļ	
								:		ļ	
<u> </u>					 -					 	
<u> </u>			<u> </u>							-	
	<u> </u>		 		 					 	
			 		 					 	
OBSERVATION	S / NOTES:		<u> </u>		L					<u> </u>	
		11.02		6	7.79	,					
		1,2	3	•	, , ,	,					
		9.2	<u> </u>								
		9.1	7								
Circle if Applic		-					Signature(e).	_ ^	7. 7	
	able:						Signaturet	»/·		7 /.	
MS/MSD	Duplicate ID No.:						Signature		5/	1)

Page___ of ___

Monitor V	Name: tic Well Data ring Well Data Vell Type: mple Type:	CNC	35			Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			3
					·		100.100.1	auon	
SAMPLING DAT		, 		· ·					,
	<u> </u>	Color	pH	S.C.	Temp.	Turbidity	DO	Salinity	Other
Time: 13	<u>/0</u>	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA NA
Method: Sow	HARE	Scc	Belo	7.	<u></u>	l	<u> </u>	<u> </u>	<u> </u>
	109	Volume		6.6	Tamp (C)	Turkidle	DO	Callala	T 000-
		 	pH	s.c.	7emp. (C)	Turbidity		Salinity	Other
Method: ろん		Initial	4.87	1.33		377	1.76		
Monitor Reading		1	5:38	1.06	39.7	60	1.69		
Well Casing Diar	neter & Material	2	2:30	1.14	29.8	28	1.88	 	
Туре:		3	5.08	1.23	29.9	25	1.40	<u> </u>	
Total Well Depth	(TD): /235					• •			
Static Water Lev	el (WL): 5.70								
One Casing Volu	ıme(gal/s):								
Start Purge (hrs)	: 1/46							<u> </u>	
End Purge (hrs):	114	/300							
Total Purge Time		,							
Total Vol. Purged	d (gal/L): 식, 60	صارح							
SAMPLE COLL	ECTION INFORMA	TION:				-	*		
	Analysis		Preser	vative		Container R	equirements	3	Collected
			<u> </u>						
		· · · · · · · · · · · · · · · · · · ·							
			-						
						,			
OBSERVATION	S / NOTES:								
•									
·									
Circle if Applica	ible:					Signature(s	=)-		
MS/MSD	Duplicate ID No.:					Joynature(:	- j.		
	Dupinosie ID 110	•				ı			
						ı			

Page_

__ of

Project Site Name: Project No.: [] Domestic Well Data [] Other Well Type: [] QA Sample Type:		<u>ca S</u>			Sample ID No.: 35GLMOYO Sample Location: MW-Y Sampled By: C.O.C. No.: Type of Sample: [] Low Concentration [] High Concentration			4
SAMPLING DATA:							,	
Date: 4-13-6	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: // 40	Visual	Standard		Degrees C	עדע	mg/l	%	NA
Method: Cooping	Clear	೯.ಀೢ	3.06	386	P	1.22		
PURGE DATA:								
Date: 9-13-97	Volume	pН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: Slow Perga	Initial	5.93	3.04	27.4	49	1.40		
Monitor Reading (ppm):	£	-58	1.16	28-3	4	1,21	OPH	\mathcal{V}
Well Casing Diameter & Material	15	5.91	1.40	28.3	8	7.20		
Type: 2" PVC.	2,2		1.56	28.6	d	1.18		
Total Well Depth (TD): 12.16	3	T	203		ø	1.22		
Static Water Level (ML): 5.95	-	13.00	203	20.8	<u> </u>	/	<u> </u>	
One Casing Volume(gal/s)://	 	-						
								1
Start Purge (hrs): 0952		 			<u> </u>	<u> </u>		
End Purge (hrs): /OS	 	 						
Total Purge Time (min):	 	 		<u> </u>				
Total Vol. Purged (gal/#: 3,5	<u> </u>		<u> </u>	1	<u> </u>		<u> </u>	
SAMPLE COLLECTION INFORMA	TION:	T						
Analysis		Preser				equirements		Collected
RTEX, MTBE, EDB, N PAH'S:	uph	140	<u> </u>	SX	1 1	<u>/ws</u>		9-13-99
		 		- XX	1 h an	ber		
		 		<u> </u>				
		 						
	· · · · · · · · · · · · · · · · · · ·							
								1
				·				
OBSERVATIONS / NOTES:								
								·
Circle of Applicables					<u></u>			
Circle if Applicable:					Signature(s):		
MS/MSD Duplicate ID No.:	:							

Page \ of \ Project Site Name: Sample ID No.: Sample Location: CNC 25 Project No.: Sampled By: C.O.C. No.: [] Domestic Well Data Monitoring Well Data Type of Sample: [] Other Well Type: [] Low Concentration [] QA Sample Type: [] High Concentration SAMPLING DATA: P-116-P Date: Color S.C. Temp. **Turbidity** DO Salinity Other рΗ Visual mS/cm Degrees C NTU Standard mg/l Time: NA Method: Peristaltic 45 PURGE DATA: Date: 9-21-91 Volume Temp. (C) **Turbidity** DO Salinity Other 257 Method: Peristaltic Initial 1.07 Monitor Reading (ppm): -Well Casing Diameter & Material 2 D8.0 Type:4" PV(3 2.42 Total Well Depth (TD): \る. つら Static Water Level (WL): 4.54 One Casing Volume(gal/L).4 9 Start Purge (hrs): 1500 End Purge (hrs): \7\6 Total Purge Time (min): \\ \ mix Total Vol. Purged (gal/L): 🔀 🚤 SAMPLE COLLECTION INFORMATION: **Analysis** Preservative Container Requirements Collected TCL Valatiles 14C1/47C Dissolved Methane *HN0-1*4.0 Lead 4-0 Anions OBSERVATIONS / NOTES: product sheen on the surface of the purge water bucket Circle if Applicable: Signature(s) **Duplicate ID No.:** MS/MSD 5-25 GH 25GLM05010

Page_

of

Project Site Name: Project No.: [] Domestic Well Data Monitoring Well Data [] Other Well Type:	_G/L	でる^	5		Sample Sample C.O.C. I Type of		NW WW	5
[] QA Sample Type:						Concentra		
SAMPLING DATA:								
Date: 9-12:94	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1630	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA
Method: Geogramo	Sec	Be lo	<u>ں</u>					
PURGE DATA: V								1
Date: 9-12-99	Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: Jow Purce	Initial	6.75	1.39	26.6	17	435		
Monitor Reading (ppm):	- 1	6.36	6.89	25.9	/2	1.46		
Well Casing Diameter & Material	2		5.44		3)	1.52		
Type: 2" PVC	3	6.47		25.7		1.67		
Type. 27	 	10.	D. 74	~ .		7.6		
Total Well Depth (TD) 26-15	,	 		7.				
Static Water Level (WL): 6.00	4	 		<u>'</u>				
One Casing Volume(gal/L):339	`	<u> </u>						<u> </u>
Start Purge (hrs): // 40	<u> </u>	1						
End Purge (hrs):							·	
Total Purge Time (min):								
Total Vol. Purged (gal/L):								
SAMPLE COLLECTION INFORM	ATION:		1	<u> </u>	<u> </u>		<u> </u>	
Analysis		Preser	vative		Container R	equirements		Collected
				Ì				
		<u> </u>						
						,		
		<u> </u>						
		1						
		 						
ODS COVATIONS AND THE								
OBSERVATIONS / NOTES:								
OBSERVATIONS / NOTES:								
OBSERVATIONS / NOTES:						ماکرستان کا استان ا		
OBSERVATIONS / NOTES:								
OBSERVATIONS / NOTES:								
OBSERVATIONS / NOTES:								
Y							•	
Circle if Applicable:					Signature(s	s):		
Y).:				Signature(s	s):	•	

								Page	of
Project Site Project No.		_CN	cas			Sample Sample Sample	Location:	SGAM MW.	0701
Monito () Other	stic Well Data oring Well Data Well Type:	#Plany Marcal Institute Analog (State				C.O.C. Type of [] Low	No.: Sample: Concentra	ation	
[] QA Sa	ample Type:					. [] Higl	n Concentr	ation ———	
SAMPLING DA	TA:								
Date: 9-	1354	Color	pН	s.c.	Temp.	Turbidity	00	Salinity	Other
Time: /	//\$	Visual	Standard		Degrees C	MTU Ø	mg/l	5	NA NA
Method: Go:	speno	Clarc	5:56	1.18	28.6	1/8	1.10	<u> </u>	
	3-79	Volume		s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
		Initial	5.56	2.56		418		Sairrity	Other
Method: 500					· · · · · · · · · · · · · · · · · · ·		1.16		
Monitor Reading		1	2:28	1.16	28.3	4		 	
	meter & Material	2	5.57	1,27	28.5	3	1.07	 	
Type: 🤿 "		3	5.56	11181	28.6	a	 / • / /		
	h (TD): /2,30								
	vel (WL): 6.50		<u> </u>	/					
	lume(gal/s): ,了S			<u> </u>					
Start Purge (hrs			/						
End Purge (hrs)			/_						
Total Purge Tim			/						
	ed (gal/L): عجدراً،	/							
SAMPLE COLL	ECTION INFORMA	TION:							
2754	Analysis		Preser			Container R			Collected
	TBE EDB,		1+C1		3×		vicis_		9-13-99
PA		ye .			- X	1/	nher		
Anjor	15				1 1	(20)	1	stic.	1 ,1
Total	Pb /		HAXX	2,	1-	200	7 - 7 - 7	L	1c
	' /		,,,						
ļ		100				·			
 	/	No.	a						
	1	4000						·	
}		1 a/2							
OBSERVATION	IS / NOTES:								<u> </u>
									
Circle if Applica	able:					Signature(s	s):		
MS/MSD	Duplicate ID No.:								

Page 1 of 1

Project Site Name:	7 - 10	. F			Sample	ID No.:	25GL	WOJ.	\ \ \ \
Project No.:		5101					CNC 25	WW.	
		-3 \ \ \ \ -			Sample	d By:	X/NC		
[] Domestic Well Data	9				C.O.C.				
Monitoring Well Da	ta					Sample:			
[] Other Well Type:						Concentra			
[] QA Sample Type:					. [] Higi	n Concentra	ation		
SAMPLING DATA:			-						
	Color	На	s.c.	Temp.	Turbidity	DO	Salinity	Oth	
Date: 9-21-99	Visual	Standard	1	Degrees C	NTU	mg/l	5	NA NA	
Method: Peristaltic	dear					5.88		- 100	
PURGE DATA:	<u>IUCAr</u>	12-22	Cicari	ا مارم		25.40			
Date: 9-21-99	Volume	T = U	s.c.	Temp. (C)	Turbidity	DO	Salinity	Oth	<u> </u>
		pH				 	Samily	Our	01
Method: Peristatic	Initial		5.20	28.4	95	5.03			
Monitor Reading (ppm):	1 .			<u> ಎ9.ಎ</u>	0	4.08			
Well Casing Diameter & Materia	1 2	5.31	2.735	ವಿ.ಎ	0	4.62			
Type: 2" PVC	3	5.33	0380.6	S9.5	0	5.88			
Total Well Depth (TD): \2.30									
Static Water Level (WL): 6 4	7								
One Casing Volume(gal/L):		 							
Start Purge (hrs): 1513	2	 	 						
		 	 	<u> </u>					
End Purge (hrs): 1540		 -							
Total Purge Time (min):		 							
Total Vol. Purged (gal/L). → 4 ¿								<u> </u>	
SAMPLE COLLECTION INFOR	MATION:				· ——————				
Analysis		Preser				equirements		Collec	ted
TCL Yolatiles			400	(3)	40 m	<u> </u>	<u> </u>	ye	5
Dissolved metal	some		400	(3)	40 m		>	 -' 	
Less		HNO.	31400	- (1)			zolosk		
PAHS		1		(इ)		mber			,
Amons		4.0		-47	500 n	y 61	astic	<u> </u>	
<u> </u>		 							
								 	
OBSERVATIONS / NOTES:								<u> </u>	
Sample Bo	44 - 1.		-\	+-1		11 .			
Sample 150	illes w	ere .	عاروع	ah 19k	en in	the p	revious	•	l
Session	`			i		•			
Circle if Applicable:					Signature(s	sh //	04	/,	
MS/MSD Duplicate ID N	vo.:						5 M/1.	7	
						4 G	[[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

Page___of_

Project Site		_cn	cas			Sample ID No.: 2561M0801 Sample Location: MW-8				
Project No.:						Sampled By:				
	Air Mall Data	•				C.O.C.		K·M		
	stic Well Data				•		Sample:			
	ring Well Data						Concentra	tion		
	Well Type: mple Type:						n Concentra			
[] QA Sa	mpie Type.					, 4 175				
SAMPLING DA										
Date: 9-	1299	Color	рН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time:	<u> </u>	Visual	Standard		Degrees C	NTU	104/1	*	NA NA	
Method: GGO PURGE DATA:		Sec	Relo	<u> </u>	<u> </u>	<u> </u>	<u></u>	L		
	2-44	Volume	pH	S.C.	Temp. (C)	Turbidity	00	Salinity	Other	
Method: 8/o-			5.28	254		44/	1.59	Selimity	Culer	
			5.38	40	39-2					
Monitor Reading				7		60		704	{	
	meter & Material	13	5.59	2.18	28.7	38	7.59			
Type: A	PUC.	2.5	5.41		28.5	35	1.54			
	(TD): /2.20	2	5:36	3.40	28.7	35	1.33			
	rel (WL): 3.85		<u> </u>			<u> </u>		<u> </u>		
One Casing Vol	ume(gal/L)://38									
Start Purge (hrs)										
End Purge (hrs):	13/2			- 2						
Total Purge Time										
	d (gaVL):4,00	Sole								
	ECTION INFORMA	TION:	-		<u> </u>		L			
	Analysis		Preser			Container R	equirements		Collected	
BTEX	MIBE, EDF	3 Noph	170	7	ر X ک	40m	wals		9-12-99	
2/	174			•	رج	K/Lam	niber		()	
Total	Leur		HM	03	1	<u> X XCO</u>	rul ple	ustis _	11	
			}		 _			F	 	
			 						 	
					 					
			 			, 			 	
					<u> </u>				+	
		·	 					····		
						~_~ <u>~~</u>				
OBSERVATION	S / NOTES:		<u> </u>							
ļ										
Į.										
•										
						<u> </u>	المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد المستقد	كين بيدار		
Circle if Applica						Signature(s	B):			
MS/MSD	Duplicate ID No.:				;	[

Page _ of _

Project Site Name: Project No.: [] Domestic Well Data Monitoring Well Data [] Other Well Type: [] QA Sample Type:		259	-		Sample C.O.C. Type of [] Low	Location: d By:	CPC 25	X 12 60 X 0201	900)
- WE WE SATE									
SAMPLING DATA:	T 6-4	T	6.0	T	Turbidle	DO	Salinity	Other	
Date: 9-21-41	Color Visual	pH	S.C. mS/cm	Temp.	Turbidity NTU	mg/l	Salirity %	NA NA	
Method: Peristaltic	CLEAT	Standard	4.09	Degrees C	3	17.0			
PURGE DATA:	Tours	10.10	17.97	<u> </u>		<u>~,,,,</u>	<u>. </u>		
Date: 9-21-99	Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other	
Method: Peristatic	Initial	6.43	2.48	26.3	18	0.78	0.14		
Monitor Reading (ppm):	1						0.10		
	 	6.51	2,27	97.3	71		 		١
Well Casing Diameter & Material	2	a.Col	3.59	30° 7			018	truck time	30V
Type: 2' PVC	75.8		1	mp à		P			Jon
Total Well Depth (TD): 11.59	1	ses	tact	1 ts	113		ļ		
Static Water Level (WL):	3.45)				<u> </u>				12
One Casing Volume(gatt): \ , \ C	21/3			26.4	137	133	Stol	brub =	'-
Start Purge (hrs): 1540 j	14	6.70	409	20-0	15	0-11			
End Purge (hrs):				MG'					
Total Purge Time (min): ~ るん	1			1716					
Total Vol. Purged (gal/L): ► 4 ১٤				17					
SAMPLE COLLECTION INFORM				1					
Analysis		Preser	vative		Container R	equirements		Collected	
TCL Valatiles		401/4	·C	C33 L	10 ml s	rials		ves	
PAHS		4°C		(9)	1 L Am	ber		res	
Lead		HNO	=/4°C	فكر	mocc	- Plat	3/52	yes	
NA Brometers								1	
The voltiles		 							
Lead JE									
		 		<u> </u>				ļ ————	Ì
		 		 				 	1
				<u> </u>				 	
									ľ
OBSERVATIONS / NOTES:		<u> </u>		<u> </u>				<u> </u>	1
	, ,		`		•				1
Well continue the pump 4	st b	run =	zex	atter	stopp	f pric	restar	tion	
the pump 4	: times	> W	2 Sav	npled	. ,	7	•]
- ()				\					1
									1
Circle if Applicable:					Signature	47	MIL		}
MS/MSD Duplicate ID No.					//		11.11)	
						CI			

	· · · · · · · · · · · · · · · · · · ·						Page	of	_
Project Site Name:	7	- 4	<u></u>		Sample	ID No.:	25GL)	X0401	1
Project No.:		200 ·	7			Location		CKAMEN	bane
r toject 140		707			Sample		IALI	SXD9 60	700
[] Domestic Well Data					C.O.C.		- Wh		i
Monitoring Well Data				•	Type of	Sample:	**********]
[] Other Well Type:						/ Concentr	ation		
[] QA Sample Type:					[] Higl	h Concenti	ration		İ
SAMPLING DATA:									•
Date: 9-21-99	Color	рH	S.C.	Temp.	Turbidity	DO	Salinity	Other	1
Time: \2\0	Visual	Standard	mS/cm	Degrees C	NTU -	mg/l	%	NA	j
Method: Peristaltic	SIEMILY	6.45	89.0	20.00	75	1.77	のな]
PURGE DATA:									}
Date: 9-21-99	Volume	pН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other]
Method: Peristaltic	Initial	6.51	19.0	8.2	٥	1.60	0.00]
Monitor Reading (ppm):	1	to.49	100	P. 25		ರ.ಎೆ	0.04		1
Well Casing Diameter & Material	2	6.48		26.5	243	1.54	2.04	turned o	1,000
Type: 2" PV(3	6.45	298	<u> </u>	75	1.77	004	1 marios	10/0×
		P. 15	0.70	366	1.7	1	10.07		dra
Total Well Depth (TD): 13,07					-				{
Static Water Level (WL): 4,42						 	ļ		┨
One Casing Volume(gal/L):5-2	4/1969	ļ	<u> </u>		11//	<u> </u>			-
Start Purge (hrs): 1040		<u> </u>	<u> </u>	ļ			ļ		1
End Purge (hrs): 1250							<u> </u>		1
Total Purge Time (min): 80 m	<u></u>		<u> </u>					<u> </u>]
Total Vol. Purged (gal/L):~ 🖔 ১	7 /7								j
SAMPLE COLLECTION INFORM	ATION:								
Analysis		Preser	vative		Container R	lequirement	5	Collected]
TCL Volatiles		HCILE	<u> </u>	(3) 4	OML	<u>vials</u>		ves	1
PAHS		400		(2) 1	L Amk			yes_	
Lead		HNO"	14C	(1) 3	50mL	Plastic		1/es	1
THE Parameters		1		7.				1	1
TCL Votatiles		FCT	<u> </u>	(3)	40mL	<u> VialS</u>		Jes-	4
Lend		ANO	HAC	CHIZ	20 Wr	Placit	-	Tes	4
Anions		THE		ICO	<u>ml</u>	- ha	Stic	145	4
		 							-
									-}
		 							1
									-
OBSERVATIONS / NOTES:		<u> </u>						<u> </u>	-{
ODOLINYA HORO 7 NO 120.		•							1
·									i
			•						
									1
Circle if Applicable:					Signature(sy. 7	,	. //	1
MS/MSD Duplicate ID No					1 /		12/	Sh	1
							1111		1

APPENDIX B

ANALYTICAL LABORATORY DATA SOIL AND GROUNDWATER

Site 25

GW

October 13, 1999	MW-03
Mr. Paul Calligan	-04

RE: Katahdin Lab Number: WP3906

Project ID: CNC Charleston
Project Manager: Ms. Andrea J.Colby

Sample Receipt Date(s): 9/14/99

Dear Mr. Calligan:

Please find enclosed the following information:

- * Report of Analysis
- * Quality Control Data Summary
- * Chain of Custody
- * Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Authorized Signature Date

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on September 14, 1999 and were logged in under Katahdin Analytical Services work order number WP3906 for a hardcopy due date of October 14, 1999.

KATAHDIN	TTNUS
Sample No.	Sample Identification
WP3906-1	36GLM0101
WP3906-2	36GLO680004
WP3906-3	36GLM0701
WP3906-4	36GLM0401
WP3906-5	36GLM0501
WP3906-6	42GLM0401
WP3906-7	42GLM0301
WP3906-8	42GLM0201
WP3906-9	42GLM0501
WP3906-10	42GLM1401
WP3906-11	42GLM1701
WP3906-12	42GLM1501
WP3906-13	42GLM1601
WP3906-14	36GLM0201D
WP3906-15	22GLM0101
WP3906-16	22GLM0201
WP3906-17	22GLM0501
WP3906-18	22GLM0701
WP3906-19	42GLM1001
WP3906-20	42GLM1201
WP3906-21	42GLM0801
WP3906-22	42GLM0601
WP3906-23	42GLM0701D
WP3906-24	42GLM0101D
WP3906-25	42GLM1801
WP3906-26	42TL00101
WP3906-27	23TL00201
WP3906-28	36GLM0601
WP3906-29	36GLM0201
WP3906-30	36GLM0301
WP3906-31	42GLM0701
WP3906-32	42GLM0901
WP3906-33	42GLM1101
WP3906-34	42GLM0101

WP3906-35	42GLM1301
WP3906-36	23GLM0401
WP3906-37	23GLX0301
WP3906-38	23GLX0401
WP3906-39	23GLX0401D
WP3906-40	23GLM05D01
WP3906-41	23GLM0101
WP3906-42	25GLM0301
WP3906-43	25GLM0801
WP3906-44	25GLM0601
WP3906-45	25GLM0401
WP3906-46	25GLM0701
WP3906-47	16GLM7D01
WP3906-48	26GLP1201
WP3906-49	26GLP1301

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Forty-seven aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on September 14, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5973-U and 5970-Q instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ppb.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. Matrix spike/matrix spike duplicate analyses were performed on samples WP3906-5, -17, and -19.

Analyses of samples WP3906-10, -11, and -13 yielded concentrations of 1,2-dichloroethene (cis) over the upper limit of the calibration curve. Since this was not a requested analyte to be reported by the client, no laboratory action was taken.

Analysis of sample WP3906-19 was performed at a 1:5 dilution due to naphthalene concentrations, resulting in elevated reporting limits.

The initial analysis of sample WP3906-30 was performed outside of the twelve hour BFB tuning window. This was recognized during data review, and the subsequent reanalysis was outside of analytical holding times. Only the reanalysis performed outside of holding times is included in this data package.

Initial analyses of samples WP3906-36 and -44 yielded concentrations of target analytes over the upper limit of the calibration curve. Reanalyses occurred at 1:50 and 1:5 dilutions, respectively. Both sets of data for each sample are included in the data package.

Analysis of the QC samples WP3906-19MS/MSD yielded target analyte concentrations over the upper limit of the calibration curve. In accordance with the method, no laboratory action was taken with these samples.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Twenty-three aqueous samples were received by Katahdin Analytical Services laboratory on September 14, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of samples WP3906 3-12 and 15-18 occurred following USEPA method 3510 on September 16, 1999. A laboratory control spike/laboratory control spike duplicate pair was extracted in the batch. Samples WP3906-13 and -19-25 were extracted following USEPA method 3510 on September 17, 1999. A laboratory control sample, along with a site-specific MS/MSD pair on sample WP3906-19, was extracted in this batch. The remaining sample, WP3906-14, was extracted following USEPA method 3510 on September 20, 1999. A laboratory control sample was also extracted in this batch.

Analysis of sample WP3906-19 yielded a concentration of the analyte naphthalene over the upper limit of the calibration curve. Reanalysis occurred at a 1:2 dilution successfully. Both sets of data for this sample are included in this data package.

Initial analysis of sample WP3906-22 yielded internal standard area recovery deviations. Reanalysis yielded similar results, confirming matrix interference. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Metals Analysis

The samples of Katahdin Work Order WP3906 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Aqueous-matrix Katahdin Sample Nos. WP3906- (1-25, 28-46) were digested for ICP analysis on 09/17/99 (QC Batch PI17ICW0), 09/21/99 (QC Batch PI21ICW0), and 09/22/99 (QC Batch PI22ICW0) in accordance with USEPA Method 3010A. Katahdin Sample Nos. WP3906- (19, 46) were prepared with duplicate matrix-spiked aliquots during digestion.

ICP analyses of Katahdin Work Order WP3906 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61 ICP spectrometer. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA) Spectrophotometry

Aqueous-matrix Katahdin Sample Nos. WP3906- (1-25, 28-35) were digested for mercury analysis on 09/22/99 (QC Batch PI22HGW0), 09/25/99 (QC Batch PI25HGW0), and 09/27/99 (QC Batch PI27HGW0) in accordance with USEPA Method 7470A. Katahdin Sample No. WP3906-1 was prepared with a single matrix-spiked aliquot, and Katahdin Sample Nos. WP3906- (19, 21) were prepared with duplicate matrix-spiked aliquots during digestion.

Mercury analyses of Katahdin Work Order WP3906 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all run QC criteria were met.

Wet Chemistry Analysis

Due to IC instrument failure, alternate methods were approved for work order WP3906 by Kelly Johnson-Carper for the analysis of nitrate and sulfate. Nitrate analyses (353.2) and Sulfate analyses (375.4) were performed according to the U.S. EPA, Methods for Analysis of Water and Wastes, EPA 600/4-79-020, 1979, Revised 1983. Nitrate analyses (E300) were performed according to the U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993. All samples were analyzed within analytical hold times.

The Wet Chemistry staff noted no protocol deviations.

KATAHDIN ANALYTICAL SERVICES	, INC.		LAB (WORK ORDER) #	
SAMPLE RECEIPT CONDITION REPO	ORT			
Tel. (207) 874-2400			PAGE:OF\2	
Fax (207) 775-4029	* . * .*		cooler:	
CHENT Tetrated NUS			COC#	
CLIENT: Tetrated NUS			DATE / TIME RECEIVED: 09-14-99-09-09	
			DATE / TIME RECEIVED: 09-14-99-09-00 DELIVERED BY: FED EX	
			RECEIVED BY:	
PROJECT: CN C CHARLESTON			LIMS ENTRY BY: BKA	
	•		LIMS REVIEW BY / PM: AOC	
Vm	YES / NO	EXCEPTIONS	COMMENTS RESOLUTION	
1. CUSTODY SEALS PRESENT / INTACT?				
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?				
5. TEMPERATURE BLANKS PRESENT?			TEMP BLANK TEMP (°C)=	
6. SAMPLES RECEIVED AT 4°C 1,27 (ICE) ICE PACKS PRESENT Y or N?			COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)	
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER				
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Ø O			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED(1)?				
12. CORRECTIVE ACTION REPORT FILED?		N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL CLP H	AZWRAP (NFESC) A	ACOE AFCEE OTHER (STATE OF ORIGIN):	
LOG-IN NOTES (1): HNO3 added to 1	metals ali 36641101	, 36 GLM 060	8 pH ~2: 426LM1001, 366LM0301, 426LM0701, 1,366LM0401, 366LM0701, 366LM0401,	
36 6LM0101, 36 6L0680004, 42 6LM07010				
		1		

0000219

Use thir pe (and additional sheets if necessary) to document samples that are received brook of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

•	
2	
0	
0	
V	
V	
٥	

	1	
KATAHJIN ANALYTICAL SERVICES, INC.		LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPORT		2 12
Tel. (207) 874-2400		PAGE:OF
Fax (207) 775-4029		cooler: 2 of 12
		COC# ~
CLIENT: Tetrated NUS		SDG#
		DATE / TIME RECEIVED: 09-14-99 ~ 09.00 DELIVERED BY: FED EX
ALC CHARLESTOA)		RECEIVED BY:
PROJECT:CNCCHARLESTON		LIMS ENTRY BY: BKK.
•		LIMS REVIEW BY / PM: AJC
YES NO E	XCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?		
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?		
4. CHAIN OF CUSTODY MATCHES SAMPLES?		
5. TEMPERATURE BLANKS PRESENT?		TEMP BLANK TEMP (°C)= 1.3 AJC notified Jett Alexa.
6. SAMPLES RECEIVED AT 4°C 11.2? (ICE) ICE PACKS PRESENT (Y) 1 N?		COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?		
8. TRIP BLANK PRESENT IN THIS COOLER		
9. PROPER SAMPLE CONTAINERS AND VOLUME?		
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?		
11. SAMPLES PROPERLY PRESERVED(1)?		•
12. CORRECTIVE ACTION REPORT FILED?	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZW	RAP NFESC ACOE	AFCEE OTHER (STATE OF ORIGIN):
Too myoxea(I):		
1 M St. AVI NAS AZAMAM ALS CISCS CON A N. I. V	1.M	To CO 11 and do cooss
No containers for 22 off COC	@ [14 0301 D.	- Jeff Alexander sond to cross
•	256LM0401	- Jett Alexander soid to add to COC

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES, INC.	LAB (WORK ORDER) # <u>W)0390</u> 4
SAMPLE RECEIPT CONDITION REPORT	
Tel. (207) 874-2400	PAGE: 3 OF 12
Fax (207) 775-4029	COOLER: 3 OF 12
-t \	COC#
CLIENT: Tetrated NUS	SDG#
	DATE / TIME RECEIVED: 09-14-99-0900
	DELIVERED BY: FED EX
PROJECT:CNCCHARLESTON	RECEIVED BY: LIMS ENTRY BY: BER
	LIMS REVIEW BY / PM:
VES . NO EXCEPTIONS	OCHURUTO DECOLUTION
YES NO EXCEPTIONS 1. CUSTODY SEALS PRESENT / INTACT?	COMMENTS RESOLUTION
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?	
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	
4. CHAIN OF CUSTODY MATCHES SAMPLES?	
5. TEMPERATURE BLANKS PRESENT?	TEMP BLANK TEMP (°C)=2. 6
6. SAMPLES RECEIVED AT 4°C 11,2?	COOLER TEMP (°C)= NA
(ICE) ICE PACKS PRESENT (Y) N? 7. VOLATILES FREE OF HEADSPACE?	(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
8. TRIP BLANK PRESENT IN THIS COOLER	
9. PROPER SAMPLE CONTAINERS AND VOLUME?	
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	
11. SAMPLES PROPERLY PRESERVED(1)?	
12. CORRECTIVE ACTION REPORT FILED?	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMERCIAL CLP HAZWRAP (NFESC) ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :	
•	

Use this enace (and additional sheets if necessary) to document samples that are received brokeneck it led. If samples required pH adjustment, record volume and type of preservative a

KATAH ANALYTICAL SERVICES,				LAB (WORK ORDER) #	NP3904
SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400	RT .			PAGE: 4	of 12
Fax (207) 775-4029				COOLER:	of 12
				COC#	
CLIENT: Tetrated NUS		_		SDG#	
				DATE / TIME RECEIVED:	09-14-99-0900
at a cuthorestory				DELIVERED BY:RECEIVED BY:	FEDEY
PROJECT: CN CCHARLESTON		_		LIMS ENTRY BY:	BFR
Vm				LIMS REVIEW BY / PM:	L)C
VW	YES	NO	EXCEPTIONS	COMMENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	V				
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		4		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
3. CHAIN OF CUSTODY SIGNED BY CLIENT?					
4. CHAIN OF CUSTODY MATCHES SAMPLES?		9		-	
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=2.0	
6. SAMPLES RECEIVED AT 4°C 1, 2?				COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP I	DI ANK IO NOT PRESENT
ICE ICE PACKS PRESENT (Y) or N?	9 /			(RECORD COOLER TEMP ONLY IF TEMP	BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?					
8. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Y				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	9		_ 🗅		
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?		9			
12. CORRECTIVE ACTION REPORT FILED?	8	9	N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL	CLP HA	ZWRAP (NFESC) AC	OE AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :					
			•		
		•			

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES,	INC.			LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO	RT			PAGE: 5 OF 12
Tel. (207) 874-2400				PAGE: OF
Fax (207) 775-4029		·· •		COOLER: 5 OF 12
				COC# -
CLIENT: Tetrated NUS				COC#SDG#
CLILIVI.		T.		DATE / TIME RECEIVED: 09-14-99-0900
				DELIVERED BY: FED EX
PROJECT: CAICCHARLESTON				RECEIVED BY: LIMS ENTRY BY: BY
PROJECT.	•	•		LIMS REVIEW BY / PM: K) L
m	V50 .	NO 5	(OERTIONS	COMMENTS
	YES	NO EX	CEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	_	_		
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		4		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?		4		
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=
6. SAMPLES RECEIVED AT 4°C/12?	0			COOLER TEMP (°C)= NA
(ICE) ICE PACKS PRESENT (Y) N?		-		(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER				
9. PROPER SAMPLE CONTAINERS AND VOLUME?	9			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	图			
11. SAMPLES PROPERLY PRESERVED(1)?		9		
12. CORRECTIVE ACTION REPORT FILED?		9	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL C	LP HAZWE	RAP (NFESC)ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
			•	
		•	·	

(1) Use this check it

0000223

ce (and additional sheets if necessary) to document samples that are received brown compromised, C-O-C discrepancies, radiation checks, residual chlorine check, residual c

of pH

KATAHJIN ANALYTICAL SERVICES	. INC.				LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO					^
Tel. (207) 874-2400					PAGE: ω of 12
Fax (207) 775-4029					1
, ,		··.			cooler: 0 of 12
					coc# -
CLIENT: Tetrated NUS					SDG#
	·	_			DATE / TIME RECEIVED: 09-14-99 ~ 09.00
					DELIVERED BY: FED EX
PROJECT: CN C CHARLESTON					RECEIVED BY: LIMS ENTRY BY: RECEIVED BY: RECEIVED BY: RECEIVED BY:
PROJECT:		_			LIMS ENTRY BY: BFK LIMS REVIEW BY / PM: ACC
Vn					LINO ILLVIEV DI / I III.
V - 60	YES	, NO	EXCEPTIONS	C	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	V			_	
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?		9		_	
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				-	
4. CHAIN OF CUSTODY MATCHES SAMPLES?		9			
5. TEMPERATURE BLANKS PRESENT?				1	TEMP BLANK TEMP (°C)=
6. SAMPLES RECEIVED AT 4°C 1,27 (ICE) ICE PACKS PRESENT (Y) N7	9			(COOLER TEMP (°C)= <u>NA</u> (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	4				
8. TRIP BLANK PRESENT IN THIS COOLER		9			
9. PROPER SAMPLE CONTAINERS AND VOLUME?				•	
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	U			•	
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?		ď			
12. CORRECTIVE ACTION REPORT FILED?		G.	N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	/ERCIAL	CLP HA	ZWRAP NFESC	ACOE A	FCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :		-			
				-	
			•		
(•	`		

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES	S, INC.				LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REP					
Tel. (207) 874-2400					PAGE: 7 OF 12
Fax (207) 775-4029		··.			cooler: 7 of 12
					COC# —
CLIENT: Tetrated NUS					SDG#
		_ _			DATE / TIME RECEIVED: 09-14-99-09.00
					DELIVERED BY: FED EX
PROJECT: CN C CHARLESTON)				RECEIVED BY: LIMS ENTRY BY: BE
PROJECT:	•				LIMS REVIEW BY / PM:
Vm					
	YES	NO NO	EXCEPTIONS		COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	U				
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?		, a			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?					· · · · · · · · · · · · · · · · · · ·
4. CHAIN OF CUSTODY MATCHES SAMPLES?		2		•	
5. TEMPERATURE BLANKS PRESENT?					TEMP BLANK TEMP (°C)= 3.0
6. SAMPLES RECEIVED AT 4°C 1,27					COOLER TEMP (°C)= NA
ICE ICE PACKS PRESENT (Y of N?			-		(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	الم				
8. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?	9				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	a				The state of the s
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?		a S			
12. CORRECTIVE ACTION REPORT FILED?		Ø	N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COM	MERCIAL	CLP HA	ZWRAP (NFESC)	ACOE	AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :					
· ·			•		
		•			
1			1		

Use this capacition of the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets if necessary) to document samples that are received by the check is seen additional sheets.

KATALLIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029		w.,		LAB (WORK ORDER) #
PROJECT: CN CHARLESTON		_		SDG#
M	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	U			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		3		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?		a		
5. TEMPERATURE BLANKS PRESENT?		_ 🗆		TEMP BLANK TEMP (°C)=2 - 2
6. SAMPLES RECEIVED AT 4°C + 2? (ICE) ICE PACKS PRESENT (Y) or N?				COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	2			· · · · · · · · · · · · · · · · · · ·
8. TRIP BLANK PRESENT IN THIS COOLER		4		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	3			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				•
12. CORRECTIVE ACTION REPORT FILED?			N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL	CLP HA	ZWRAP (NFESC)	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added,

KATAHDIN ANALYTICAL SERVICES	, INC.	,		LAB (WORK ORDER) # <u>W)0390</u> 4
SAMPLE RECEIPT CONDITION REPO	ORT .		•	$\dot{\alpha}$
Tel. (207) 874-2400				PAGE: 9 OF 12
Fax (207) 775-4029				COOLER: 9 OF 12
		٠.,		COOLER. 1 OF 12
				COC#
CLIENT: Tetrated NUS				SDG#
				DATE / TIME RECEIVED: 09-14-99-09.00 DELIVERED BY: FED EX
1 - 1100 - 5070 ()				RECEIVED BY: RECEIVED BY:
PROJECT: CAIC CHARLESTON				LIMS ENTRY BY:
	•			LIMS REVIEW BY / PM:
M	V=0	NO:	EVOCETIONS	COMMENTS
·	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	_			
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		<u>a</u>		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=2/
6. SAMPLES RECEIVED AT 4°C/M2?	9			COOLER TEMP (°C)= NA
(ICE) ICE PACKS PRESENT (Y) N?				(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	2			
8. TRIP BLANK PRESENT IN THIS COOLER		a		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	2			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?			, a	
12. CORRECTIVE ACTION REPORT FILED?		2	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP NFESC ACOL	E AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
			•	
			•	
		•	1	

Use thir to be (and additional sheets if necessary) to document samples that are received brown recompromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if the check if th

KATALLIN ANALYTICAL SERVICES	•			L	AB (WORK C)RDER) #	NP3904	
SAMPLE RECEIPT CONDITION REPORTED (207) 874-2400	ORT			. D	AGE:	17)	of 12	
Fax (207) 775-4029	,					17)		
		•••		C	OOLER:	10	_or <u>12</u>	
CHENT Toloated NUS		•			OC#			
CLIENT: 1 charled NUS					DG# DATE / TIME I	RECEIVED:	09-14-99-0	900
				D	ELIVERED E	BY:	FEDEX	
PROJECT: CAIC CHARLESTON					RECEIVED B' IMS ENTRY		BKK	
	•				IMS REVIEW		KIL	
Mu	YES	, NO	EXCEPTIONS	COMMENT	S		RESOLUTION	
1. CUSTODY SEALS PRESENT / INTACT?								·
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?				***************************************	·			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?								
4. CHAIN OF CUSTODY MATCHES SAMPLES?								
5. TEMPERATURE BLANKS PRESENT?				TEMP BLAI	NK TEMP (°C)=	2.1	-	
6. SAMPLES RECEIVED AT 4°C 127	日			COOLER TO	EMP (°C)=	NA NA		
(ICE) ICE PACKS PRESENT (Y) N?	~			(RECORD (COOLER TEMP	ONLY IF TEMP	BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	2							
8. TRIP BLANK PRESENT IN THIS COOLER								
9. PROPER SAMPLE CONTAINERS AND VOLUME?	2				·			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	a							
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?		2						
12. CORRECTIVE ACTION REPORT FILED?		Ø	N/A					
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	JERCIAL	CLP HA	AZWRAP NFESC	ACOE AFCEE C	OTHER (STATE	OF ORIGIN):	·	
LOG - IN NOTES ⁽¹⁾ :								
			•				•	
		•						

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES,	INC.		•	LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO	RT		•	11.
Tel. (207) 874-2400 Fax (207) 775-4029				
		·		cooler:of
				COC#
CLIENT: Tetrated NUS		_		SDG#
•				DATE / TIME RECEIVED: 09-14-99-09-00 DELIVERED BY: FED EX
PROJECT: CN C CHARLESTON				RECEIVED BY: RVK
PROJECT:		-		LIMS ENTRY BY: BKU
Vm				LIMS REVIEW BY / PM:A) C
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	Y			
CHAIN OF CUSTODY PRESENT IN THIS COOLER?		3		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	U			
4. CHAIN OF CUSTODY MATCHES SAMPLES?		2		
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=1.7 ASC notitied Jeft blexa-
5. SAMPLES RECEIVED AT 4°C 1, 27 (ICE) ICE PACKS PRESENT (Y) 1 N7	E			COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	2			
B. TRIP BLANK PRESENT IN THIS COOLER		9		
9. PROPER SAMPLE CONTAINERS AND VOLUME?				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				
12. CORRECTIVE ACTION REPORT FILED?			N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	RCIAL (CLP HA	ZWRAP NFESC A	COE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
			•	
		`,	`	

Use this pe (and additional sheets if necessary) to document samples that are received brown compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added,

KATAH ANALYTICAL SERVICES,	INC.			LAB (WORK ORDER) #
SAMPLE RECEIPT CONDITION REPO			•	PAGE: 12 OF 12
Tel. (207) 874-2400 Fax (207) 775-4029				
				cooler: 1Z of 12
				COC#
CLIENT: Tetrated NUS		_		DATE / TIME RECEIVED: 09-14-99 ~ D9 00
			·	DELIVERED BY: FED EX
PROJECT: CN C CHARLESTON				RECEIVED BY: LIMS ENTRY BY: BKU
PROJECT.	•			LIMS ENTRY BY: BKG LIMS REVIEW BY / PM: AJC
Mu	YES 🗡	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	V			
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?		o		
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?		2		· · · · · · · · · · · · · · · · · · ·
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=3./
6. SAMPLES RECEIVED AT 4°C 1,27 (ICE) ICE PACKS PRESENT (Y) 1 N7				COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	2			
8. TRIP BLANK PRESENT IN THIS COOLER		3		
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Ø			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	0			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				
12. CORRECTIVE ACTION REPORT FILED?		Ø	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	MERCIAL	CLP H	AZWRAP (NFESC) ACO	DE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				
200-11110/20				
			•	
			•	

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

Katahdin Katahd

CHAIN OF CUSTODY

ANALY HEAL SERVICES Tel: (207) 874-2400 Fax: (207) 775-4029		PLEASE PRINT IN PEN Page										
Tetm Ted NVS Inc	Contact Ruce		1/1-1022	F (Phone # (843)	554	-44	Fa:	x #)			
Address NH 21 AVE H	City	N. C				tate	50		Zip Code	9		Maria.
Purchase Order #	Proj. Name / No							Katahdii	n Quote	#		
Bill (if different than above)		Add	ress									
Sampler (Print / Sign) Serry Kriga / Phy	Kiles						Copie		•	•		
	P3906 -		F:14	File			PRESER	VATIVES			Filt.	Filt.
KATAHDIN PROJECT MANAGE		-	Filt. □Y□N	Filt. DYDN	Filt.	Filt. DYDN	Filt. DYDN	Filt. DYDN	Filt.	□Y □N		
			E08	,	7	TE SE	- 2					
SHIPPING INFO:	CLIEN	Т	MBE,		Lea	3 13	3 3			:		
TEMP°C TEMP BLANK INTAC	CT 🗆 NOT IN	VTACT	12.2 2.4	Hb	70KL/	<u>ू भू</u>						
* Sample Description Date / Ticcoll'd		No. of Cntrs.	多多	P	10	A STAN	62.5			:		
236LMOY01 9/10/99/1	517 GW	6	3	ユ	1							
23 GLX0301 9/1/99/1	535 CW	6	3	2	1							
2361×0401 9/10/99/1	540 GW	6	3	2	7							
23GLX0401 \ 9/10/99/0	000 GW	6	حم	2		:						
236LM05D01 9/10/11	1600 GW	6	3	2	1							
236L Molol 9/10/11	1630 GW	6	3	ュ	1	,						<u> </u>
23TL00201 9/10/1	0800 GW	1										<u> </u>
16GHM7DOI 9/12/41/0.	755 GN	5	_3_	2								
25-M0301 /15	510 GW	6	3	2	1				,			<u> </u>
25ETM0801 //12	SSS GW	6	3	a	1							
	GO GW	6	3	a	7							
25GLM070) 1/3/4/1	115 GW	10	3	a		1.	3					<u> </u>
25G1W0H01 /1	140 GM	5	3	3	1	A						<u> </u>
	345 GN	5	3	2	((00	er 2	I		 	
26GLP130) V /)3	332 GM	5	3	2					Q	31)		ļ
COMMENTS												
SOMMENTO .												
Religious Participation Date / Time Participation Partic	Received By: (S	ignature) F	Relinquist	ned By: (Signature	Da	ite Til	ne E	ecoived	By (Sign	nature)
Relinquished By: (Signature) Date / Time	Received By: (S	ignature	F	Relinquist	ned By: (Signature		ite / Tir		Received	By: (Sign	nature)
FORMSOURCE INC. 12 (207) 782-3311 FORM # CHN-OF-CSTDY												

Katahdin NATIVE GAT STRATETS FO. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029

CHAIN of CUSTODY

PLEASE PRINT IN PEN

Page 2 of

Client		Contac				hone #			Fax			
TETRA TECH NUS		PAUL		ISAI		850):					350-	
tress 1401 OVEN PARK	DR 102 C	TALL	AHASS	EE	S	tate Fu			Zip Code	32	308	w <u> </u>
Purchase Order #	Proj. Nan		-					Katahdi	n Quote #	•		
Bill (if different than above)		Ac	idress									
Sampler (Print / Sign) T. Thom	Den Thomas	Thomas	ga-	•			Copie	s To:				
LAB USE ONLY WORK ORDER	" WP3906	_* _/					RESERV	ATIVES				
KATAHDIN PRO	JECT MANAGER	·			Filt.		Filt. JY 🗆 N	Filt. DYON	Filt.	Filt. DYON	Filt.	Filt.
REMARKS:			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			McKan						
SHIPPING INFO: FED EX	O UPS	CLIENT	שר יערו			1 Mc				:		į
AIRBILL NO:	☐ INTACT ☐	NOT INTACT	E S	Me	S	ž C	Mions			i		
* Sample Description	Date / Time Ma	atrix No. of Cntrs.	BIEX, MTBE, TOTAL NAPH.	PAH (None)	Metals (HNO=)	Dissolved (HCI)	Anions	1		:	:	
366LMØ601	1399/1015 6	w 10	3	a	1	3	1					
36 GLM 0201	91399/1055 GI	w 10	3	2]	3	1					
366MØ3Ø1	91399/1131 61	w 10	3	2		3	1					
34 GLM GAOID	91399/0000 GI	w 6	3	2	1_							
22 GLM Ø 1 Ø 1	9 1099/1130 6	we	3	a	1							
22 GLMØ201	91099/1110 GI	w le	3	a	1							
	91099/1418 GI	v 6	3	a								
22 GLM0701	91099/1420 60	م لا	3	a	1							
226LMERGID	91099 COCO GI	w 6	3	a	1	(BK)						
	/						-					
	/											
	/											
	/			0	zolor	- 10 =		50	BN			
	/						EA	The	ee (-0).C		
	/							· · · · · · · · · · · · · · · · · · ·				
	/							<u>-</u>				
COMMENTS		1	·			1					<u> </u>	
Placed on ice.												
	e / Time Received 12,1700 81345	By: (Signature		elinquish	ed By: (S	Signature)	Dat 44-6	e / Tir	ne R	Received By: (Signature)		
Water and the second se		By: (Signature		elinquish	ed By: (S	Signature)	<u> </u>	te / Tir	ne R	eceived	By: (Signa	ature)
FORMSOURCE INC. 12 (207) 782-3311 FORM # CHN-OF-CSTDY												

P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029 $\bigwedge \!\! \bigwedge \!\! igwedge K$ atahdin

CHAIN OF CUSTODY

PLEASE PRINT IN PEN

Cli		ıs		Paul	Call	ioan		Phone #	385	-989	9 (,	850)		
Ad	Tetra Tech NI dress 1401 Oven Pa	rk Dr 102	City -		hass				<i>CL</i>			e 32	30	m _A
Pu	rchase Order #		. Name / N								in Quote	#		0
Bil	(if different than above)			Ac	idress									
Sa	mpler (Print / Sign) P. Halv	erson					-		Copi	es To:				
L	AB USE ONLY WORK ORDER	7# WP 3906	- *						PRESE	CONTAIN	S			
		OJECT MANAGER			Filt. DYDN	Filt.	Filt.		Filt.	Filt.	Filt.	Filt.	Filt.	VOY.
—	MARKS:					18E,		Vetra						
	IIPPING INFO:	O UPS	CLIE	NT		ا∠ّحرّ		ed h						
	RBILL NO:	K 🗍 INTACT	□ NOT	INTACT	S 50	N. S. S.	PAH	30	Amions					
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	Metals	BIEX, 16tal	A S	Dissolved	₹	\$,	
	42GLM1001	912990941	641	4	1	3	a							
	42GLM0701	91299/1000	1	9	1	3	2	3		<u></u>				
	42GLM1201	91279/1030	GW	6	1	3	2							
	426LM0901	91299/1030	GW	19	1	3	2	3					Share .	
	42G(M0801	91299/1057	GW	6	1	3	2		<u> </u>	<u> </u>			<u> </u>	1
	42GM1101	91299/1106	GW	9	1	3	a	3						
	426CM0101	91299/1435	GW	19	1	3	a	3	1					
	42GLM/301	91299/1449	GW	10	1	3	2	3			<u> </u>		<u> </u>	
<u> </u>	426LM 0601	91294 1535	GW	6	/	3	۵			<u> </u>		ļ	ļ	
<u>_</u>	42 GLM6701	91299 1202	GW	1					1					
_	42 GLM0901	91299/1206	GW	1_					1	<u> </u>			<u> </u>	
	42GLM 1101	91299 1204	l	1					1			<u> </u>		<u> </u>
	42GM0701D	91299/0000		6	1	3	2		ļ			ļ	<u> </u>	
_	42GLMOIOID	91299000		4	(3	2		<u> </u>				<u> </u>	
<u> </u>	42GLM1001M	91299/0941		6	1	3	2						<u> </u>	1
	42GLM 1801	91399/0842	GW	6		3	2		·					
CO	MMENTS													
F	Relinquished By: (Signature)	/ 4 11	ived By: (-		Relinquist	ned By: (Signatui	e) D	ate / Ti	me .F	Received	By: (Sign	nature)
			1345 eived By: (Relinquist	ned By: (Signatui	`_	44-55 (ate / Ti	_ _	Received	By: (Sigr	nature)
	SOURCE INC. 27 (207) 782-3311				_									

CHAIN OF COSTODY PO. Box 720 Katahdin Westbrook, ME 04098 Tel: (207) 874-2400 PLEASE PRINT IN PEN Fax: (207) 775-4029 Client PAUL COLLIGAN (BSD) 385-9899 (BSO) NUS 102 Zip Code 32308 Talla Hasset Proj. Name / No. Purchase Order # Katahdin Quote # Address Bill (if different than above) Copies To: Sampler (Print / Sign) ANALYSIS AND CONTAINER TYPE PRESERVATIVES LAB USE ONLY Filt. KATAHDIN PROJECT MANAGER REMARKS: FED EX O UPS CLIENT SHIPPING INFO: AIRBILL NO:_ TEMP BLANK □ NOT INTACT ☐ INTACT TEMP°C Date / Time No. of Matrix Sample Description Cntrs. coll'd 91099/1110 366LM0101 GW 36 GLO680004 41099/1115 GW 3 2 9169/1120 GW 366LM 0701 6 3 2 91099/1510 36GLM 0401 GW 6 91091515 3 2 لهي 366LM0501 42GLM 0401 91109/1055 GW 3 2 3 42GU010301 91199/1050 GW 6 3 91199/1045 2 4264m0201 2 3 •426LM0501 91199/1635 GW 42GLM1401 91199 1110 GW 3 42GM1701 2119/1110 6 3 42 GLM 1501 91199/1125 GW 42 GLM 1601 و

COMMENTS					
Relinquished By: (Signature) nelinquished By: (Signature)	Date / Time	Received By: (Signature) 813 458 36933 Received By: (Signature)	Relinquished By: (Signature) Relinquished By: (Signature)	Date / Time (490 000) Date / Time	Received By: (Signature)

42TL00101

4/13/4

Project Manager: Andrea J. Colby

ORDER DATE: 09/14/99 PHONE: 850/385-099

REPORT TO: Paul Calligan

Tetra Tech NUS

FAX: 850/385-. 30

DUE: 14 OCT

1401 Oven Park Dr., Suite 102

FAC.ID: CNC CHARLESTON

Tallahassee, FL 32308

INVOICE: ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220 PROJECT: CTO #68

METHOD

SAMPLED BY: P.HALVERSON/T.THOMPSON/J.KRIEGERDELIVERED BY: FEDEXDISPOSE: AFTER 13

ITEM LOG NUMBER SAMPLE DESCRIPTION

SAMPLED DATE/TIME RECEIVED 14 SEP AQ

1 WP3906-1 36GLM0101 WP3906-2 36GLO680004 10 SEP 1110 10 SEP 1115

DETERMINATION Target Analyte List Metals, Total OTY PRICE AMOUNT 100.00 200.00

Project Manager: Andrea J. Colby

ORDER DATE: 09/14/99

REPORT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 14 OCT

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: P.HALVERSON/T.THOMPSON/J.KRIEGERDELIVERED BY: FEDEXDISPOSE: AFTER 13

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED 2 WP3906-3 36GLM0701 10 SEP 1120 14 SEP WP3906-4 36GLM0401 10 SEP 1510 10 SEP 1515 WP3906-5 36GLM0501 10 SEP 1515 10 SEP 1055 WP3906-6 42GLM0301 11 SEP 1050 11 SEP 1045 WP3906-8 42GLM0501 11 SEP 1035 11 SEP 1035 WP3906-9 42GLM1401 11 SEP 1125 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1125 11 SEP 1125 WP3906-13 42GLM0201D 13 SEP 11 SEP 1130 WP3906-16 22GLM0201 10 SEP 1130 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420 10 SEP 1420	
WP3906-4 36GLM0401 10 SEP 1510 WP3906-5 36GLM0501 10 SEP 1515 WP3906-6 42GLM0401 11 SEP 1055 WP3906-7 42GLM0301 11 SEP 1050 WP3906-8 42GLM0201 11 SEP 1045 WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1110 WP3906-14 36GLM0201D 11 SEP 1125 WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1418	MATRIX
WP3906-5 36GLM0501 10 SEP 1515 WP3906-6 42GLM0401 11 SEP 1055 WP3906-7 42GLM0301 11 SEP 1050 WP3906-8 42GLM0201 11 SEP 1045 WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 11 SEP 1125 WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1418	AQ
WP3906-6 42GLM0401 11 SEP 1055 WP3906-7 42GLM0301 11 SEP 1050 WP3906-8 42GLM0201 11 SEP 1045 WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-7 42GLM0301 11 SEP 1050 WP3906-8 42GLM0501 11 SEP 1045 WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-8 42GLM0201 11 SEP 1045 WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-9 42GLM0501 11 SEP 1035 WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-10 42GLM1401 11 SEP 1125 WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-11 42GLM1701 11 SEP 1110 WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-12 42GLM1501 11 SEP 1110 WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-13 42GLM1601 11 SEP 1125 WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-14 36GLM0201D 13 SEP WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-15 22GLM0101 10 SEP 1130 WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-16 22GLM0201 10 SEP 1110 WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-17 22GLM0501 10 SEP 1418 WP3906-18 22GLM0701 10 SEP 1420	
WP3906-18 22GLM0701 10 SEP 1420	
WP3906-19 42GLM1001 12 SEP 0941	
WP3906-20 42GLM1201 12 SEP 1030	
WP3906-21 42GLM0801 12 SEP 1057	
WP3906-22 42GLM0601 12 SEP 1535	
WP3906-23 42GLM0701D 12 SEP 0000	
WP3906-24 42GLM0101D 12 SEP 0000	
WP3906-25 42GLM1801 13 SEP 0842	
DETERMINATION METHOD OTY PRICE	TUUOMA
Target Analyte List Metals, Total 23 100.00	2300.00
	1725.00
	2875.00
TOTALS 23 300.00	6900.00

Project Manager: Andrea J. Colby

ORDER DATE: 09/14/99 PHONE: 850/385-999

REPORT TO: Paul Calligan

Tetra Tech NUS

FAX: 850/385- 60

1401 Oven Park Dr., Suite 102

DUE: 14 OCT

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: P.HALVERSON/T.THOMPSON/J.KRIEGERDELIVERED BY: FEDEXDISPOSE: AFTER 13

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED	DATE/	TIME	RECE.	VED	<u>MATRIX</u>
3	WP3906-26	42TL00101	13	SEP		14	SEP	AQ
	WP3906-27	23TL00201	10	SEP	0800			
	DETERMINATION	ON	METH	OD	OTY	PRIC	Œ	AMOUNT
	Volatile Or	ganics by 8260B	SW8260		2	75.0	00	150.00

LOG NUME	BER SAMPLE DESCRIPTION	SAMPLED I	DATE/TIME	RECEIVED	MATRIX
4 WP3906-2	28 36GLM0601	13	SEP 1015	14 SEP	AQ
WP3906-2	29 36GLM0201	13	SEP 1055		
WP3906-3	30 36 GLM0301	13	SEP 1131		
WP3906-3	31 42GLM0701	12	SEP 1202		
WP3906-3	32 42GLM0901	12	SEP 1206		a merata.
WP3906-3	33 42GLM1101	12	SEP 1204		
WP3906-3	34 42GLM0101	12	SEP 1435	•	
WP3906-3	35 42GLM1301	12	SEP 1449		

DETERMINATION	METHOD	OTY	PRICE	TRUOMA
Target Analyte List Metals, Total		8	100.00	800.00
Volatile Organics by 8260B	SW8260	8	75.00	600.00
Polynuclear Aromatic Hydrocarbons	EPA 8270	8	125.00	1000.00
Nitrate as N	353.2	8	30.00	240.00
Sulfate	375.4	8	0.00	0.00
Methane Subcontract		8	95.00	760.00
TOTALS		8	425.00	3400.00

SAMPLED BY: P.HALVERSON/T.THOMPSON/J.KRIEGERDELIVERED BY: FEDEXDISPOSE: AFTER 13

ORDER NO WP-3906

Project Manager: Andrea J. Colby

ORDER DATE: 09/14/99

REPORT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 14 OCT

Tallahassee, FL 32308

FAC. ID: CNC CHARLESTON

INVOICE:

TOTALS

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PROJECT: CTO #68

PITTSBURGH, PA 15220

	LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE	TIME	RECEIVE	MATRIX
5	WP3906-36 23GLM0401	10 SEP		14 SEI	P AQ
	WP3906-37 23GLX0301	10 SEP			
•	WP3906-38 23GLX0401	10 SEP	1540		
	WP3906-39 23GLX0401D	10 SEP			
	WP3906-40 23GLM05D01	10 SEP			
	WP3906-41 23GLM0101	10 SEP			
	WP3906-42 25GLM0301	12 SEP			
•	WP3906-43 25GLM0801	12 SEP			
	WP3906-44 25GLM0601	12 SEP			
	WP3906-45 25GLM0401	13 SEP	1140		
	DETERMINATION	METHOD	OTY	PRICE	AMOUNT
	Volatile Organics by 8260B	SW8260	10	75.00	750.00
	Polynuclear Aromatic Hydrocarbons	EPA 8270		125.00	1250.00
	Lead, Total	200.7/6010	10	20.00	200.00
	Elements Sample Preparation		10	0.00	0.00
	TOTALS		10	220.00	2200.00
٠.	LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE	TTME	RECEIVE	MATRIX
6	WP3906-46 25GLM0701	13 SEP		14 SEI	
		Marian			
	DETERMINATION	METHOD	OTY	PRICE	AMOUNT
	Volatile Organics by 8260B	SW8260	1	75.00	75.00
	Polynuclear Aromatic Hydrocarbons	EPA 8270	1	125.00	125.00
	Lead, Total	200.7/6010	1	20.00	20.00
	Elements Sample Preparation	252, 2	1	0.00	0.00
	Nitrate as N	353.2	1	30.00	30.00
	Sulfate	375.4	1	0.00	0.00
	Methane Subcontract		1	95.00	95.00

1

345.00

345.00

Project Manager: Andrea J. Colby

ORDER DATE: 09/14/99 PHONE: 850/385-9899

REPORT TO: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

FAX: 850/385- 50

DUE: 14 OCT

FAC.ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE

TETRA TECH NUS, INC.

FOSTER PLAZA 7, 661 ANDERSEN DR.

PHONE: 412/921-7090

PO: N7912-P99264

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: P.HALVERSON/T.THOMPSON/J.KRIEGERDELIVERED BY: FEDEXDISPOSE: AFTER 13

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED DA	re/TIME	RECEIVED	MATRIX
7	WP3906-47	16GLM7D01	12 SI	EP 0755	14 SEP	AQ
	WP3906-48	26GLP1201	13 SI	EP 1345		
	WP3906-49	26GLP1301	13 SI	EP 1355		
	DETERMINATI	ON	METHOD	OTY	PRICE	AMOUNT
	Volatile Or	ganics by 8260B	SW8260	3	75.00	225.00
	Polynuclear	Aromatic Hydrocarbons	EPA 8270	3	125.00	375.00
	TOTALS			3	200.00	600.00

ORDER NOTE: QC-II+ W/NARRATIVE

DD (KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

PITTSBURGH, PA. 15220

REPORT AND DISK

INVOICE: With Report

TOTAL ORDER AMOUNT \$13,795.00 This is NOT an Invo

AJC/BKR

09-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
A-1	Insufficient sample was provided to enable laboratory to achieve the laboratory's standard Practical Quantitation Level.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
B	'B' flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.
E -	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0301

Matrix: WATER

SDG Name: WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-042

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q .	M	DF	
7439-92-1	LEAD	1.4	В		P	1	

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-42

SDG:

WP3906

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

9/29/99 Date Analyzed:

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0301	AQ	9/12/99	9/14/99	9/17/99	DPD	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	. 10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	81	%	1.0				
2-FLUOROBIPHENYL	80	%	1.0				
TERPHENYL-D14	69	%	1.0	•			

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-42

SDG:

WP3906 10/12/99

Report Date: PO No. :

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

9/20/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0301	AQ 9/12/99		9/14/99	9/20/99	KMC	5030	КМС	
Compound	R	esult	Units	Sample DF PQL		Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	-5	5	•	
DIBROMOFLUOROMETHANE		99	%	1.0				
1,2-DICHLOROETHANE-D4		92	%	1.0				
TOLUENE-D8		101	%	1.0				
P-BROMOFLUOROBENZENE	•	104	%	1.0				

Report Notes:

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0801

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-043

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF
7439-92-1	LEAD	1.3	В		P	1

Comments:

Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-43

SDG:

WP3906

Report Date:

10/6/99 N7912-P99264

PO No. :

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/29/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0801	AQ	AQ 9/12/99		9/17/99	DPD	EPA 3510	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<12	ug/L	1.2	12	10		
2-METHYLNAPHTHALENE	<12	ug/L	1.2	12	10		
ACENAPHTHYLENE	<12	ug/L	1.2	12	10		
ACENAPHTHENE	<12	ug/L	1.2	12	10		
FLUORENE	<12	ug/L	1.2	12	10		
PHENANTHRENE	<12	ug/L	1.2	12	10		
ANTHRACENE	<12	ug/L	1.2	12	10		
FLUORANTHENE	<12	ug/L	1.2	12	10		
PYRENE	<12	ug/L	1.2	12	10		
BENZO[A]ANTHRACENE	<12	ug/L	1.2	12	10		
CHRYSENE	<12	ug/L	1.2	12	10		
BENZO[B]FLUORANTHENE	<12	ug/L	1.2	12	10		
BENZO[K]FLUORANTHENE	<12	ug/L	1.2	12	10		
BENZO[A]PYRENE	<12	ug/L	1.2	12	10		
INDENO[1,2,3-CD]PYRENE	<12	ug/L	1.2	12	10		
DIBENZ[A,H]ANTHRACENE	<12	ug/L	1.2	12	10		
BENZO[G,H,I]PERYLENE	<12	ug/L	1.2	12	10		
NITROBENZENE-D5	74	%	1.2				
2-FLUOROBIPHENYL	88	. %	1.2				
TERPHENYL-D14	104	%	1.2				

Report Notes:

A-1

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-43

SDG:

WP3906

Report Date: PO No.:

10/12/99

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/21/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25GLM0801	AQ	AQ 9/12/99		9/14/99	9/21/99	JSS	5030	JSS	
Compound	Re	Result Units		DF	Sample PQL	Method PQL			
BENZENE		<5	ug/L	1.0	5	5			
TOLUENE		<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5			
ETHYLBENZENE	,	<5	ug/L	1.0	5	5			
NAPHTHALENE	i	<5	ug/L	1.0	5	5			
MTBE		<5	ug/L	1.0	5	5			
OTAL XYLENES		<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	1	109	%	1.0					
1,2-DICHLOROETHANE-D4	1	04	%	1.0					
OLUENE-D8	1	06	%	1.0					
P-BROMOFLUOROBENZENE	1	03	%	1.0					

Report Notes:

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0601

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-044

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	. M	DF		
7439-92-1	LEAD	1.09	U	•	P	1		

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-44

SDG:

WP3906

Report Date: PO No.:

10/6/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/29/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0601	AQ	AQ 9/12/99		9/17/99	DPD	EPA 3510	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1	0 ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHYLENE	<1	0 ug/L	1.0	10	10		
ACENAPHTHENE	<1	0 ug/L	1.0	10	10		
FLUORENE	<1	0 ug/L	1.0	10	10		
PHENANTHRENE	<1	0 ug/L	1.0	10	10		
ANTHRACENE	<1	0 ug/L	1.0	10	10		
FLUORANTHENE	<1	0 ug/L	1.0	· 10	10		
PYRENE	<1	0 ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<1	0 ug/L	1.0	10	10		
CHRYSENE	<1	0 ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<1	0 ug/L	1.0	10	10		
BENZO[A]PYRENE	<1	0 ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<1	0 ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<1	0 ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<1		1.0	10	10		
NITROBENZENE-D5	81	%	1.0				
2-FLUOROBIPHENYL	10	4 %	1.0				
TERPHENYL-D14	95	5 %	1.0	•			

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

P-BROMOFLUOROBENZENE

103

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-44

SDG:

WP3906 10/12/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

9/21/99

Sample Description	Matrix Sar	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25GLM0601	AQ 9/12/99		9/14/99	9/21/99	JSS	5030	JSS	
Compound	Result	Units	DF	Sample PQL	Method PQL			
BENZENE	<5	ug/L	1.0	5	5	· · · · · · · · · · · · · · · · · · ·		
TOLUENE	<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5			
ETHYLBENZENE	<5	ug/L	1.0	5	5			
NAPHTHALENE	<5	ug/L	1.0	. 5	5			
MTBE	E260	ug/L	1.0	5	5			
TOTAL XYLENES	<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	108	%	1.0					
1,2-DICHLOROETHANE-D4	104	%	1.0		,			
TOLUENE-D8	106	%	1.0					

1.0

Report Notes:

Ε

Client: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-44DL

SDG:

WP3906

Report Date:

10/12/99 N7912-P99264

PO No.:

CTO #68

Project:

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/22/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method 5030	Analyst
25GLM0601	AQ	9/12/99	9/14/99	9/22/99	KMC		KMC
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<2	25 ug/L	5.0	25	5		
TOLUENE	<2	25 ug/L	5.0	25	5		
1,2-DIBROMOETHANE	<2	25 ug/L	5.0	25	5		
ETHYLBENZENE	<2	25 ug/L	5.0	25	5		
NAPHTHALENE	<2	25 ug/L	5.0	25	5		
MTBE	22	20 ug/L	5.0	25	5		
TOTAL XYLENES	<2	25 ug/L	5.0	25	. 5		
DIBROMOFLUOROMETHANE	11	11 %	5.0				
1,2-DICHLOROETHANE-D4	10)2 %	5.0				
TOLUENE-D8	10)7 %	5.0				
P-BROMOFLUOROBENZENE	10)4 %	5.0				

Report Notes:

0-2

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0401

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-045

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q M	DF
7439-92-1	LEAD	1.09	U	P	1

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-45

SDG:

WP3906

Report Date:

10/6/99

PO No.: Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/29/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0401	AQ	9/13/99	9/14/99	9/20/99	DS	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		•
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		•
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	70	%	1.0				
2-FLUOROBIPHENYL	80 .	%	1.0				
TERPHENYL-D14	100	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-45

SDG:

WP3906 10/12/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260 Date Analyzed: 9/21/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0401 Compound	AQ 9/13/99		9/14/99	9/21/99	JSS	5030	JSS	
	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	•	110	%	1.0				
1,2-DICHLOROETHANE-D4	•	106	%	1.0				
TOLUENE-D8	•	106	%	1.0				
P-BROMOFLUOROBENZENE		104	%	1.0				

Report Notes:

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0701

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-046

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	· M	DF	
7439-92-1	LEAD	1.09	U		P	1	

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-3906-46

Report Date: 10/13/99

PO No.

: N7912-P99264

Project

: CIO #68

WICH: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 9 of 9

		SAMPLED BY		SAMPLED DATE RECEIVED			
Aqueous			P.HALVERSON/ T.THOMPSON/ J.KRINGER		09/13/99		09/14/99
ESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
16	mg/L mg/L	1.0			09/14/99	KW	
	ESULT	ESULT UNITS	ESULT UNITS DF	T.THOMPSO J.KRIEGER ESULT UNITS DF *PQL 16 mg/L 1.0 0.050	T.THOMPSON/ J.KRIEGER ESULT UNITS DF *PQL METHOD 16 mg/L 1.0 0.050 353.2	T.THOMPSON/ J.KRIEGER ESULT UNITS DF *PQL METHOD ANALYZED 16 mg/L 1.0 0.050 353.2 09/14/99	T.THOMPSON/ J.KRIEGER ESULT UNITS DF *PQL METHOD ANALYZED BY 16 mg/L 1.0 0.050 353.2 09/14/99 KW

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/13/99

LJO/baeajc(dw)/msm PI14NOW1

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-46

SDG:

WP3906

Report Date:

10/6/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/30/99

Sample Description	Matrix S	ampied Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0701	AQ	9/13/99	9/14/99	9/20/99	DS	EPA 3510	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
NDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	49	- %	1.0				
2-FLUOROBIPHENYL	58	%	1.0				
TERPHENYL-D14	103	%	1.0				

Report Notes:

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP3906-46

SDG:

WP3906

Report Date: PO No.:

10/12/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

9/21/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0701	AQ	9/1	13/99	9/14/99	9/21/99	JSS	5030	JSS
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		. <u>Pilana</u>
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	1	109	%	1.0	•			
1,2-DICHLOROETHANE-D4	1	104	%	1.0				
TOLUENE-D8	1	105	%	1.0				
P-BROMOFLUOROBENZENE	. 1	103	%	1.0				

Report Notes:

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWPI22ICW0

Matrix: WATER

SDG Name: WP3906

QC Batch ID: PI22ICW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	RESULT	С
LEAD	1.090	Ū ;

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWPI22ICW0

Matrix: WATER

SDG Name: WP3906

QC Batch ID: PI22ICW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
LEAD	500.0	552.13	110.4	80	120

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0701S

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-046S

Concentration Units (ug/L or mg/Kg dry weight): ug/L

	Spiked	Sample	Spike		Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	M
LEAD	538.0900	0.6200 U	500	107.6	75	125	P

Comments:

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0701S

Matrix: WATER

SDG Name: WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-046P

Concentration Units (ug/L or mg/Kg dry weight): ug/L

	Spiked	Sample	Spike		Control Lin	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	M
LEAD	504.6900	0.6200 U	500	100.9	75	125	P

Comments:

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0701

Matrix: WATER

SDG Name:

WP3906

Percent Solids: 0.00

Lab Sample ID: WP3906-046

Concentration Units (ug/L or mg/Kg dry weight):

ug/L

Analyte	Control Limits	Spike Result	C Spike Dup. Result	С	RPD	Q	M	
LEAD		538.0900	504.6900		6.4		P	

Comments:

Method Blank and Laboratory Control Sample Results

Client: Tetra Tech NUS Work Order: WP3906

METHOD BLANK RESULTS

LABORATORY CONTROL SAMPLE RESULTS

							1211111122					701121102 DI		
	Date	Date		Co	ncentratio	n		Practical		True	Measured	Percent	Acceptance	Acceptance
	of	of	Units	N	Aeasured		Acceptance	Quantitation	Units	Value	Value	Recovered	Range	Range
Parameter	Prep	Analysis			in Blank		Range	Level**					(%)	(mg/kg)
Nitrate-Nitrogen	14-Sep-99	14-Sep-99	mg/L	<	0.050	<	0.050	0.050	mg/L	1.00	0.931	93.1	80-120	
Sulfate	24-Sep-99	24-Sep-99	mg/L	<	1.0	<	1.0	1.0	mg/L	10	10	100.0	80-120	
	04-Oct-99	04-Oct-99	mg/L	<	1.0	<	1.0	1.0	mg/L	250	223	89.2	83-112	@

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

@ The laboratory uses the internally established statistical 99% confidence range as the acceptance range for this LCS.

0000181

Katahdin Analytical Services, Inc. Ouality Control Report

Duplicate and Matrix Spike/Matrix Spike Duplicate Results

Client: Tetra Tech NUS
Work Order: WP3906

DUPLICATE RESULTS

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

			Samp	ole			Acceptance		Concen	tration o	or Quanti	ity	Matrix S	Spike Re	covery (%)		
	Katahdin		Measur	ements	Mean		Range	Units	Sampl	Spike	Sample	Sample	Sample	Sampi	Acceptance	RPD	Acceptance
Parameter	Sample No	Units	Rep 1	Rep 2	Conc	RPD	for RPD		Only	Added	+Spike	+Spike	+Spike	+Spik	Range	(%)	Range
					•	(%)	(%)				Dup 1	Dup 2	Dup 1	Dup	(%)		(%)
Nitrate - N	WP3906-46	mg/L	0.161	0.163	0.162	1.2	0-20	mg/L	0.16	0.5	0.396		47.2	*	75-125		0-20

RPD = Relative percent difference, which is the absolute value of the difference between two replicate results divided by the mean concentration then multiplied by 100%.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

* Matrix spike recovery is outside the laboratory's specified acceptance range indicating potential sample matrix interference and potential bias of reported value for this parameter.

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;091799

Lab Name: Katahdin Analytical Services

SDG No.: WP3906

Lab File ID:

X2921

Lab Sample ID: SBLK;091799

Instrument ID:

5970-X

Date Extracted: 9/17/99

GC Column:

RTX-5

ID: 0.25

(mm)

Date Analyzed: 09/27/99

Matrix: (soil/water) WATER

Time Analyzed: 16:30

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;091799	LCS;091799	X2922	9/27/99	5:14:00 PM
42GLM1601	WP3906-13	X2923	9/27/99	5:59:00 PM
42GLM1001	WP3906-19	X2924	9/27/99	6:43:00 PM
42GLM1001MS	WP3906-19MS	X2925	9/27/99	7:27:00 PM
42GLM1001MSD	WP3906-19MSD	X2926	9/27/99	8:11:00 PM
42GLM0801	WP3906-21	X2928	9/27/99	9:39:00 PM
42GLM1001	WP3906-19DL	X2933	9/28/99	11:59:00 AM
42GLM1201	WP3906-20	X2934	9/28/99	12:43:00 PM
42GLM0601	WP3906-22	X2935	9/28/99	1:27:00 PM
42GLM0701D	WP3906-23	X2936	9/28/99	2:12:00 PM
42GLM0101D	WP3906-24	X2937	9/28/99	2:56:00 PM
42GLM1801	WP3906-25	X2938	9/28/99	3:40:00 PM
36GLM0601	WP3906-28	X2939	9/28/99	4:24:00 PM
36GLM0201	WP3906-29	X2940	9/28/99	5:09:00 PM
36GLM0301	WP3906-30	X2941	9/28/99	5:53:00 PM
42GLM0901	WP3906-32	X2943	9/28/99	7:22:00 PM
42GLM0101	WP3906-34	X2945	9/28/99	8:50:00 PM
42GLM0601	WP3906-22RA	X2947	9/29/99	10:07:00 AM
42GLM0701	WP3906-31	X2948	9/29/99	10:51:00 AM
42GLM1101	WP3906-33	X2949	9/29/99	11:35:00 AM
42GLM1301	WP3906-35	X2950	9/29/99	12:20:00 PM
25GLM0301	WP3906-42	X2951	9/29/99	1:04:00 PM
25GLM0801	WP3906-43	X2952	9/29/99	1:48:00 PM
25GLM0601	WP3906-44	X2953	9/29/99	2:32:00 PM
16GLM7D01	WP3906-47	X2954	9/29/99	3:17:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;091799

SDG:

WP3906

Report Date:

10/6/99 N7912-P99264

PO No.:

CTO #68

Project:

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/27/99

Sample Description	Matrix Sa	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;091799	AQ	•	•	9/17/99	DPD	EPA 3510	sw
Compound	Result	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10 [°]	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	82	%	1.0				
2-FLUOROBIPHENYL	81	%	1.0				
TERPHENYL-D14	112	%	1.0	•			

Report Notes:

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: X2922

Sample ID: LCS;091799

Date Run: 9/27/99

Analyst: SW

Time Injected: 5:14:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	33.1	*66	70-130
ACENAPHTHENE	50	34.4	*69	70-130
ACENAPHTHYLENE	50	34.5	*69	70-130
ANTHRACENE	50	45.7	91	70-130
BENZO[A]ANTHRACENE	50	44.5	89	70-130
BENZO[A]PYRENE	50	44.6	89	70-130
BENZO[B]FLUORANTHENE	50	44,5	89	70-130
BENZO[G,H,I]PERYLENE	50	46.5	93	70-130
BENZO[K]FLUORANTHENE	50	46.5	93	70-130
CHRYSENE	50	53.3	106	70-130
DIBENZ[A,H]ANTHRACENE	50	44.1	88	70-130
FLUORANTHENE	50	43.5	87	70-130
FLUORENE	50	35.5	71	70-130
INDENO[1,2,3-CD]PYRENE	50	41.0	82	70-130
NAPHTHALENE	50	31.3	*62	70-130
PHENANTHRENE	50	47.5	95	70-130
PYRENE	50	48.8	. 98	70-130

Katahdin Analytical Services

MS/MSD Report

Sample WP3906-19 WP3906-19MS WP3906-19MSD	File Name X2924 X2925 X2926	Date Acquired 9/27/99 9/27/99 9/27/99		Time inj Ana 6:43:00 PM SV 7:27:00 PM SV 8:11:00 PM SV		Matrix AQ AQ AQ	Method 8270_99 8270_99 8270_99			and differen
Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
CHRYSENE	0	56	54 .	45.8	44.6	82	82	60-140	2.6	30
ACENAPHTHENE	57.8	56	54	104	97.8	82	74	60-140	6.1	30
ACENAPHTHYLENE	0	56	54	35.9	37.2	64	69	60-140	3.6	30
ANTHRACENE	9.96	56	54	50.1	45.9	72	66	60-140	8.8	30
BENZO[A]ANTHRACENE	0	56	54	37.2	39.2	66	72	60-140	5.2	30
BENZO[A]PYRENE	0	56	54	35.2	41.3	63	76	60-140	16	30
BENZO[B]FLUORANTHENE	0	56	54	34.5	43.5	62	80	60-140	23	30
2-METHYLNAPHTHALENE	34.7	56	54	74.6	52.1	71	*32	60-140	*36	30
BENZO[K]FLUORANTHENE	0	56	54	34.0	42.4	61	78	60-140	22	30
PYRENE	13.2	- 56	54	57.6	58.9	79	85	60-140	2.2	30
DIBENZ[A,H]ANTHRACENE	0	56	54	35.2	37.8	63	70	60-140	7.1	30
FLUORANTHENE	20.8	56	54	59.1	61.9	68	76	60-140	4.6	30
FLUORENE	32.4	56	54	72.3	60.0	71	*51	60-140	18	30
INDENO[1,2,3-CD]PYRENE	0	56	54	38.2	32.0	68	*59	60-140	18	30
NAPHTHALENE	255	56	54	365	356	*197	*187	60-140	2.5	30

116

39.3

98.8

40.8

89

70

61

76

60-140

60-140

16

3.7

3

36

66.0

0

56

54

PHENANTHRENE

BENZO[G,H,I]PERYLENE

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:

Katahdin Analytical Services

ID: 0.25

SDG No.: WP3906

SBLK;092099

Lab File ID:

X2931

Lab Sample ID: SBLK;092099

Instrument ID:

5970-X

Date Extracted: 9/20/99

GC Column:

RTX-5

(mm)

Date Analyzed: 09/28/99

Matrix: (soil/water) WATER

Time Analyzed: 10:30

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCS;092099	LCS;092099	X2932	9/28/99	11:14:00 AM
36GLM0201D	WP3906-14	X2955	9/29/99	4:01:00 PM
25GLM0401	WP3906-45	X2956	9/29/99	4:45:00 PM
26GLP1201	WP3906-48	X2958	9/29/99	6:13:00 PM
26GLP1301	WP3906-49	X2959	9/29/99	6:58:00 PM
25GLM0701	WP3906-46	X2962	9/30/99	8:46:00 AM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;092099

SDG:

WP3906

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

9/28/99 Date Analyzed:

Matrix Sampled Date Rec'd Date Ext. Date Ext'd By Ext. Method **Analyst** Sample Description AQ SBLK;092099 9/20/99 DS **KRT EPA 3510** Sample Method Compound Result Units DF **PQL** PQL **NAPHTHALENE** <10 10 ug/L 1.0 10 2-METHYLNAPHTHALENE <10 ug/L 1.0 10 10 **ACENAPHTHYLENE** <10 1.0 ug/L 10 10 **ACENAPHTHENE** <10 ug/L 1.0 10 10 **FLUORENE** <10 ug/L 1.0 10 10 **PHENANTHRENE** <10 1.0 10 ug/L 10 **ANTHRACENE** <10 1.0 10 ug/L 10 **FLUORANTHENE** <10 ug/L 1.0 10 10 **PYRENE** <10 ug/L 1.0 10 10 **BENZO[A]ANTHRACENE** <10 ug/L 1.0 10 10 **CHRYSENE** <10 ug/L 1.0 10 10 BENZO[B]FLUORANTHENE ug/L <10 1.0 10 10 BENZO[K]FLUORANTHENE <10 ug/L 1.0 10 10 BENZO[A]PYRENE <10 ug/L 1.0 10 10 INDENO[1,2,3-CD]PYRENE <10 ug/L 1.0 10 10 ug/L DIBENZ[A,H]ANTHRACENE <10 1.0 10 10 ug/L BENZO[G,H,I]PERYLENE <10 1.0 10 10 NITROBENZENE-D5 84 % 1.0 2-FLUOROBIPHENYL 93 % 1.0

1.0

: :

Report Notes:

TERPHENYL-D14

90

%

Katahdin Analytical Services 8270 LCS Recovery Sheet

Lab File: X2932

Sample ID: LCS;092099

Date Run: 9/28/99

Analyst: SW

Time Injected: 11:14:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	50	37.9	76	70-130
ACENAPHTHENE	50	38.6	77	70-130
ACENAPHTHYLENE	50	40.3	80	70-130
ANTHRACENE	50	42.9	86	70-130
BENZO[A]ANTHRACENE	50	41.3	82	70-130
BENZO[A]PYRENE	50	41.0	82	70-130
BENZO[B]FLUORANTHENE	50	40.5	81	70-130
BENZO[G,H,I]PERYLENE	50	43.8	88	70-130
BENZO[K]FLUORANTHENE	50	42.3	84	70-130
CHRYSENE	50	50.7	101	70-130
DIBENZ[A,H]ANTHRACENE	50	39.2	78	70-130
FLUORANTHENE	50	42.4	85	70-130
FLUORENE	50	37.0	74	70-130
INDENO[1,2,3-CD]PYRENE	50	40.7	81	70-130
NAPHTHALENE	50	37.1	74	70-130
PHENANTHRENE	50	44.5	89	70-130
PYRENE	50	46.0	92	70-130

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKU21B

Lab Name:

Katahdin Analytical Services

SDG No.: WP3906

Lab File ID:

U1000

Lab Sample ID: VBLKU21B

Date Analyzed: 09/21/99

Time Analyzed: 16:31

GC Column: RTX-624 ID: 0.18

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5973-U

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSU21B	LCSU21B	U0999	9/21/99	3:50:00 PM
25GLM0801	WP3906-43	U1009	9/21/99	10:05:00 PM
25GLM0601	WP3906-44	U1010	9/21/99	10:40:00 PM
25GLM0401	WP3906-45	U1011	9/21/99	11:16:00 PM
25GLM0701	WP3906-46	U1012	9/21/99	11:52:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKU21B

SDG:

WP3906 10/12/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/21/99

Sample Description	Matrix	x Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
VBLKU21B	AQ -		-	9/21/99	JSS	5030	JSS		
Compound	Re	esult	Units	DF	Sample PQL	Method PQL			
BENZENE		<5	ug/L	1.0	5	5			
TOLUENE		<5	ug/L	1.0	5	5			
1,2-DIBROMOETHANE		<5	ug/L	1.0	5	5			
ETHYLBENZENE		<5	ug/L	1.0	5	5			
NAPHTHALENE		<5	ug/L	1.0	5	5			
MTBE		<5	ug/L	1.0	5	5			
TOTAL XYLENES		<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	1	105	%	1.0					
1,2-DICHLOROETHANE-D4		99	%	1.0					
TOLUENE-D8	1	104	%	1.0					
P-BROMOFLUOROBENZENE	1	102	%	1.0					

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: U0999

Sample ID: LCSU21B

Date Run: 9/21/99

Analyst: JSS

Time Injected: 3:50:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	50.2	100	60-140
BENZENE	50	50.3	101	60-140
ETHYLBENZENE	50	49.0	98	60-140
МТВЕ	50	43.1	86	60-140
NAPHTHALENE	50	45.4	91	60-140
TOLUENE	50	52.7	105	60-140
TOTAL XYLENES	150	143	96	60-140

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKU22A

Lab Name: Katahdin Analytical Services

SDG No.: WP3906

Lab File ID:

U1018

Lab Sample ID: VBLKU22A

Date Analyzed: 09/22/99

RTX-624 ID: 0.18

Time Analyzed: 10:44

GC Column:

(mm)

Heated Purge: (Y/N) N

Instrument ID:

5973-U

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSU22A	LCSU22A	U1017	9/22/99	9:54:00 AM
25GLM0601	WP3906-44DL	U1019	9/22/99	11:32:00 AM
23GLM0401	WP3906-36DL	U1021	9/22/99	12:47:00 PM
36GLM0501MS	WP3906-5MS	U1025	9/22/99	3:14:00 PM
36GLM0501MSD	WP3906-5MSD	U1026	9/22/99	3:50:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number: VBLKU22A SDG: WP3906 10/12/99 Report Date: PO No.: N7912-P99264

Project: % Solids:

CTO #68 N/A

Method:

SW8260

Date Analyzed: 9/22/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKU22A	AQ	AQ -		•	9/22/99	KMC	5030	КМС
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
OLUENE	•	<5	ug/L	1.0	5 -	5		
,2-DIBROMOETHANE		<5	ug/L	1.0	5	5		
THYLBENZENE	•	<5	ug/L	1.0	5	5		
IAPHTHALENE	•	<5 ∘	ug/L	1.0	. 5	5		
MTBE	•	<5	ug/L	1.0	5	5		
OTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	1	10	%	1.0				
,2-DICHLOROETHANE-D4	9	99	%	1.0				
OLUENE-D8	1	07	%	1.0				
P-BROMOFLUOROBENZENE	1	04	%	1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: U1017

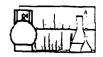
Sample ID: LCSU22A

Date Run: 9/22/99

Analyst: KMC

Time Injected: 9:54:00 AM

Matrix: AQ


Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.7	99	60-140
BENZENE	50	51.1	102	60-140
ETHYLBENZENE	50	48.6	97	60-140
МТВЕ	50	41.8	84	60-140
NAPHTHALENE	50	41.2	82	60-140
TOLUENE	50	53.6	107	60-140
TOTAL XYLENES	150	141	94	60-140

Katandin Analytical Services

MS/MSD Report

Sample	File Name	Date Acqu	ired T	d Time inj		Matrix	Method			partial (sq.)
WP3906-5 WP3906-5MS	Q6636 U1025	9/15/9 9/22/9		7:00 PM 4:00 PM	HMP KMC	AQ AQ	8260_99 8260_99			
WP3906-5MSD	U1026	9/22/9	9/22/99 3:50:00 PM		КМС	KMC AQ 8260_99			-	
Compound Name	Native (ug/L)	MS Spk Amount (ug/L)	MSD Spk Amount (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	MS REC (%)	MSD REC (%)	Recovery Limits (%)	RPD (%)	RPD Limit (%)
TOTAL XYLENES	0	150	150	134	123	89	82	60-140	8.6	20
TOLUENE	0	50	50	51.1	46.5	102	93	60-140	9.4	20
NAPHTHALENE	0	50	50	45.6	42.6	91	85	60-140	6.8	- 20
МТВЕ	0	50	50	45.4	43.4	91	87	60-140	4.5	20
ETHYLBENZENE	0	50	50	45.6	41.8	91	84	60-140	8.7	20
BENZENE	0	50	50	48.5	44.6	97	89	60-140	8.4	20
1,2-DIBROMOETHANE	0	50	50	53.6	48.8	107	98	60-140	9.4	20

ENSR Air Toxics Specialty Laboratory 42 Nagog Park Acton, MA 01720

DATE:

October 12, 1999

TO:

Andrea Colby

Katahdin Analytical

340 County Road No. 5

P.O. Box 720

Westbrook, ME 04098

Re:

Organic Analyses of Aqueous Samples for Methane by Gas

Chromatography/ Flame Ionization Detection (GC/FID)- WP3906

PROJECT #: 8601-008-200

LAB ID #:

990175

ANALYTICAL PROCEDURE:

Nine (9) aqueous samples were analyzed for methane under the guidelines of SW-846 Method 3810.

A Hewlett Packard 5890 series II gas chromatograph (GC) equipped with a Hewlett Packard flame ionization detector (FID) was used for the analysis. A 1.0 mL headspace aliquot of each sample was injected into the column for analysis. The operating conditions of the GC/FID are listed in Table 1. A five point calibration was performed for the target analyte, methane.

No problems occurred during sample receipt, log-in, or analysis.

QUALITY CONTROL:

- 1. A laboratory blank was analyzed daily in the same manner as the samples. Methane was not detected in the blank.
- 2. MS/MSD analyses were performed on the following sample: WP3906-28

The recoveries and relative percent differences of methane were within the QC acceptance limits.

- 3. A duplicate analysis was performed on the following sample: WP3906-34(A)
- 4. A laboratory control spike was analyzed daily. The recovery of methane was within the QC acceptance limits.

Date Samples Received by the Laboratory:

9/16/99

Date Analysis Started:

9/24/99

C:\My Documents\Kat 990175 990178 990180\katrpt3.doc

Katahdin Katahdin Katahdin Katahdin Katahdin Katahdin

CHAIN of CUSTODY

	207) 874-2400 (207) 775-4029					<u>ر</u>	PLEAS	E PRIN	T IN PEI	V	Pa	ge of
Client	· · · · ·		Conta				Phone #			Fa (x #	
ddress	tect in the	City	<u> </u>	<u> Asec</u>	<u> (alb</u>		itate_			Zip Code		
	D		1-	<u> </u>								
Purchase Order #	Proj	. Name / N							Katandii	n Quote	#	
Bill (if different than above)			A	ddress					·		· · · · · · · · · · · · · · · · · · ·	
Sampler (Print / Sign)			,	•					es To:			
LAB USE ONLY WORK ORDE	R#: ROJECT MANAGER	_ •		Filt.	Cit			PRESER	VATIVES			Eilt :
REMARKS: SAN 48 E.M.				OYÖI	VOYÖN	DYÖN	OYÖN	<u>OYÖN</u>	NOYON	OYÖN	DYÖN	Filt. DY DN D
				١								:
SHIPPING INFO: 3 FED EX				He hane								:
AIRBILL NO: TEMP BLAN	IK 🗍 INTACT	☐ NOT	INTACT	L/k								
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	57								
	 	* ^	 			<u>(d</u>					:	
INF 3906-18	9-13-99/1015	AQ	3	×	-		- f ()		-			
PS-2906596	/1055		3	X	-				2.			
100 Tary, 20	/1131		3	X	-				ے	<u> </u>		
1 W E 1 W 3 1	1302		<u></u>	X	-							
JUN EHOWERS	1206		3	X								
100 2406 33	1204		3	X					<u></u>		ļ	
10f 3706-34	/1435		3	X					4			
10424063E	\i443		3	X					<i>i</i>			
118 3906-46	1/1115		3	×					7			
	/		· .		1							
	/											
	/											
	/											
	/											
	/											
	/											
OMMENTS QC-II + 2/11/A	ecofive I	之(KA	೭ರೆಲ್	70C	`b&3)		ecu ^{l 1}					
	15-75-16-ZS	ived By: (S			Relinquisi Relinquisi				ite / Tin 16/39 / ite / Tin	ne F	leceived leceived	By: (Signatu n)///// By: (Signatu
				_ _				_ _		_ _	<u> </u>	

SAMPLE LOG-IN & RECEIPT CHECKLIST Client/Proj #: Katahdin NP3906 Lab Pool #: 990175 Proj Mgr. M. Hout Date Time: 9/1 Inspected & Logged in by:__ Analysis Number of : Analyze by Storage Requested Location Samples : (date) Sample Matrix ULOUS Due 10/13 Circle the appropriate response: 1/ Shipped / Hand delivered COC/ present// not present on receipt 3) COC Tape (present) not present on shipping container 4) Samples broken /Intact) on receipt 5) Samples ambient /chilled on receipt Temp blank=5°C 6) Samples preserved correctly / incorrectly / none recommended 7) Received within outside holding time 8) COC tapes present (not present on samples

9) Discrepancies / NO discrepancies noted between COCs and samples

Additional Comments:

25GLM10701

Lab Name: ENSR	Contract:		WP3906-46(C)	
Lab Code:	Case No.:	SAS NO.:	SDG NO.:	
Matrix: (soil/water)	_water	Lab Sample ID:	990175-9	
Sample wt / vol: 32	.5 ml (g/ml)	Lab File ID:	KAT_008	
Level: (low/med)	low	Date Received:	9/16/99	
% Moisture: NA _		Date Analyzed:	9/24/99	
GC Column: _ Carboxen	1004 OD: 1/16"	Dilution Factor:_	1	
Soil Extract Volume:	NA(μl)	Soil Aliquot Volu	ıme: NA (μl)	
-				
CAS NO.	COMPOUND	CONCENTRAT		
74-82-8	Methane	6.5		

EPA SAMPLE NO.

Lab Name: ENSR _	Contract:	VBLK01	
Lab Code:	Case No.:	SAS NO.: SDG NO.:	
Matrix: (soil/water)v	vater	Lab Sample ID: MB990175	•
Sample wt / vol: 32.5	ml (g/ml)	Lab File ID:KAT_006	· .
Level: (low/med)	low	Date Received:NA	· <u>·</u>
% Moisture: NA		Date Analyzed:9/24/99	:
GC Column: _ Carboxen 10	004 OD: 1/16"	Dilution Factor:1	
Soil Extract Volume:	ΝΑ (μΙ)	Soil Aliquot Volume: NA	(µl)
CAS NO. C	OMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8 M	lethane	5.2	U

			EPA SAMPLE	NO.
Lab Name: ENS	R Contract:		LCS01	
Lab Code:	Case No.:	_ SAS NO.:	SDG NO.:	
Matrix: (soil/water)	water	Lab Sample ID:	LCS990175	
Sample wt / vol: 3	2.5 ml (g/ml)	Lab File ID:	KAT_007	,
Level: (low/med)	low	Date Received:	NA	
% Moisture: NA		Date Analyzed:	9/24/99	<u>.</u> .
GC Column: _ Carboxe	n 1004 OD: 1/16"	Dilution Factor:	1	
Soil Extract Volume:	ΝΑ (μί)	Soil Aliquot Vol	ume: NA (μ	I)
CAS NO.	COMPOUND	CONCENTRAT (µg/L or PPMv)		Q
74 02 0	Methane	210		

			EPA SAMPLE I	NO.
Lab Name: EN	SR Contract: _		WP3906-28(B)	MS
Lab Code:	Case No.:	SAS NO.:	SDG NO.:	
Matrix: (soil/water)	water	Lab Sample ID	990175-1 MS	-
Sample wt / vol:	32.5 ml (g/ml)	Lab File ID:	KAT_023	
Level: (low/med)	low	Date Received	:9/16/99	_
% Moisture: NA	4	Date Analyzed	:9/24/99	_
GC Column: _ Carbox	ken 1004 OD: 1/16"	_ Dilution Factor	:1	_
Soil Extract Volume: _	NA (µl)	Soil Aliquot Vo	lume: NA (μl)
CAS NO.	COMPOUND	CONCENTRA (µg/L or PPMv		Q
74-82-8	Methane	340)	

Lab Name: ENSR	Contract:		WP3906-28	
Lab Code:	Case No.:	SAS NO.:	SDG NO.:	
Matrix: (soil/water) water	er	Lab Sample ID:	990175-1 MSD	
Sample wt / vol: 32.5 ml _	(g/ml)	Lab File ID:	KAT_024	
Level: (low/med)low		Date Received:	9/16/99	· · · · · · · · · · · · · · · · · · ·
% Moisture: NA		Date Analyzed:	9/24/99	-
GC Column: _ Carboxen 1004	OD: 1/16"	Dilution Factor:	1	
Soil Extract Volume: NA	(µl)	Soil Aliquot Volu	ıme: NA	_ (µl)
CAS NO. COM	IPOUND	CONCENTRAT (µg/L or PPMv)		Q
74-82-8 Meth	ane	350		

3 LABORATORY CONTROL SPIKE RECOVERY

Lab Name: ENSR _		Contract:	······································
Lab Code:	Case NO.:	SAS NO.:	SDG NO.:
Laboratory Control Sample	e No: LCS01		

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(µg/L)	(µg/L)	REC #	REC.
Methane	205.0	206.7	101%	50 - 150

^{* -} Values outside of QC limits.

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:ENSR		_		Contract		
Lab	Code:	Case N	O.: S	SAS NO.:		SDG NO.:	
Matr	ix Spike - EPA Sample	NO.:WP39	906-28	_			
							•
		SPIKE	SAMPLE	MS	3	MS	QC
		ADDED	CONCENTRATION	CONCENT	RATION	%	LIMITS
	COMPOUND	(µg/L)	(µg/L)	(µg	/L)	REC #	REC.
	Methane	205.0	189	344.8		76%	50-150
		SPIKE	MSD	MSD			
		ADDED	CONCENTRATION	%	%	QC.	LIMITS
	COMPOUND	(µg/L)	(µg/L)	REC #	RPD #	RPD	REC.
	Methane	205.0	345.8	77%	0.68%	50	50-150
Spike recovery:0 out of2 outside limits. RPD:0 out of1 outside limits.							
	Comments:						

October 20, 1999

Mr. Paul Calligan

Tetra Tech Nus

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

RE: Katahdin Lab Number:

WP4035

Project ID:

CNC Charleston

Project Manager:

Ms. Andrea J.Colby

Sample Receipt Date(s):

9/22/99

Dear Mr. Calligan:

Please find enclosed the following information:

- * Report of Analysis
- * Quality Control Data Summary
- * Chain of Custody
- * Confirmation

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. This cover letter is an integral part of the ROA.

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Sincerely,

KATAHDIN ANALYTICAL SERVICES

Authorized Signature

10/20/99 Date

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on September 22, 1999 and were logged in under Katahdin Analytical Services work order number WP4035 for a hardcopy due date of October 22, 1999.

KATAHDIN Sample No. WP4035-1 WP4035-2 WP4035-3 WP4035-4 WP4035-5 WP4035-6 WP4035-7 WP4035-8	TTNUS <u>Sample Identification</u> 22GLM0301 22GLM0401 22GLM0601 25GLM0101 25GLM0501 25GLM0501D 25GLX0201 25GLX0401	GEL Sample Identification
WP4035-5	25GLM0501	
WP4035-6	25GLM0501D	
WP4035-7	25GLX0201	
WP4035-8	25GLX0401	
WP4035-9	22GLM0301D	
WP4035-10	25TL00201	
WP4035-11	36SLB020405	9909644-05
WP4035-12	36SLB050405	9909644-06
WP4035-13	36SLB030405	9909644-07

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Three soil/sediment and ten aqueous samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on September 22, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5973-U (aqueous), 5970-Q (aqueous), and 5972-M (low level soils) instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ppb.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate analysis was performed on any of the samples in this workorder.

Analyses of samples WP4035-1 and -9 yielded concentrations of 1,1-dichloroethane over the upper limit of the calibration curve. Since this analyte was not requested by the client to be reported, no laboratory action was taken.

Initial analyses of samples WP4035-5 and -6 were performed at 1:50 dilutions due to the matrix, with target analyte concentrations still over the upper limit of the calibration curve, as well as surrogate recovery deviations. Reanalyses occurred at 1:200 dilutions successfully. For each sample, both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Three soil/sediment and nine aqueous samples were received by Katahdin Analytical Services laboratory on September 22, 1999 for analysis in accordance with 8270C for a client specified PAH list of analytes.

Extraction of the soil samples occurred following USEPA method 3550 on September 24 and 27, 1999. A laboratory control spike was extracted in each batch. Extraction of all of the aqueous samples occurred following USEPA method 3510 on September 23, 1999. A laboratory control sample/laboratory control sample duplicate was extracted in the batch.

Initial analyses of samples WP4035-5 and -6 yielded target analyte concentrations over the upper limit of the calibration curve. Reanalyses occurred at 1:4 dilutions successfully. For each sample, both sets of data are included in this data package.

Initial analysis of sample WP4035-3 yielded internal standard area recovery deviations. Reanalysis yielded similar results, confirming matrix interference. Both sets of data are included in the data package for this sample.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Metals Analysis

The samples of Katahdin Work Order WP4035 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Aqueous-matrix Katahdin Sample Nos. WP4035-(1-9) were digested for ICP analysis on 09/24/99 (QC Batch PI24ICW1) in accordance with USEPA Method 3010A. Katahdin Sample No. WP4035-3 was prepared with duplicate matrix-spiked aliquots during digestion.

Soil-matrix Katahdin Sample Nos. WP4035-(11-13) were digested for ICP analysis on 10/01/99 (QC Batch PJ01ICS0) in accordance with USEPA Method 3050B. The measured calcium (16.3 mg/kg) and sodium (11.5 mg/kg) concentrations of the preparation blank that is associated with this QC batch exceed the laboratory's acceptance limits. However, because the measured calcium and sodium concentrations of all associated samples are more than ten times those of the preparation blank, no corrective action was required.

ICP analyses of Katahdin Work Order WP4035 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61 ICP spectrometer. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA) Spectrophotometry

Aqueous-matrix Katahdin Sample Nos. WP4035-(1, 2, 3, 9) were digested for mercury analysis on 09/25/99 (QC Batch PI25HGW0) in accordance with USEPA Method 7470A.

Soil-matrix Katahdin Sample Nos. WP4035-(11-13) were digested for mercury analysis on 10/07/99 (QC Batch PJ07HGS1) in accordance with USEPA Method 7471A. Katahdin Sample No. WP4035-11 was prepared with duplicate matrix-spiked aliquots.

Mercury analyses of Katahdin Work Order WP4035 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all run OC criteria were met.

Wet Chemistry Analysis

Due to IC instrument failure, alternate methods were approved for work order WP3906 by Kelly Johnson-Carper for the analysis of nitrate and sulfate. Nitrate analyses (353.2) and Sulfate analyses (375.4) were performed according to the U.S. EPA, Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, 1979, Revised 1983. Sulfate analyses (E300) were performed according to the U.S. EPA "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA 600/R-93/100, August 1993. Analyses for Solids-Total Residue (TS) have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All samples were analyzed within analytical hold times. No protocol deviations were noted by the Wet Chemistry laboratory staff.

901					
KATAHUIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029				PAGE: 1 OF 3	
CLIENT: TETRATERH UUS		~. 		COOLER: OF OF OCCUPATION OCCUPATION OCCUPATIO	
PROJECT: <u>C70</u> 68	•	~		RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM: ADL	
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION	
1. CUSTODY SEALS PRESENT / INTACT?		, U			
2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?	9				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	4				
4. CHAIN OF CUSTODY MATCHES SAMPLES?	3				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 1.0 ASC notified Vanlalli	sa.
6. SAMPLES RECEIVED AT 4°C +/- 2? (CE) ICE PACKS PRESENT (V) or N?		9		COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)	
7. VOLATILES FREE OF HEADSPACE?	2				
8. TRIP BLANK PRESENT IN THIS COOLER					
9. PROPER SAMPLE CONTAINERS AND VOLUME?	2				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	0	~ □			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?		3			
12. CORRECTIVE ACTION REPORT FILED?			N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL	CLP HA	ZWRAP NFESC A	COE AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :	D	256	-LXC401 -	> 76 snly container > pot > 2.0	
_	-> AL	·PH	TO PH. ≤ 2.0		
		•	`		

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029 CLIENT:				LAB (WORK ORDER) # WP4035 PAGE: 2 OF 3 COOLER: 2 OF 3 COC# SDG# DATE / TIME RECEIVED: 09-23-59~0930 DELIVERED BY: FEDERAL RECEIVED BY: BYE LIMS ENTRY BY: 85 W	
PROJECT.				LIMS ENTRY BY PM: A	
1. CUSTODY SEALS PRESENT / INTACT? 2. CHAIN OF CUSTODY PRESENT IN THIS COOLER?	YES D	NO I	EXCEPTIONS	COMMENTS RESOLUTION	
3. CHAIN OF CUSTODY SIGNED BY CLIENT?					
4. CHAIN OF CUSTODY MATCHES SAMPLES?	Ø				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 0.6 For 9/22/99	Italligan
6. SAMPLES RECEIVED AT 4°C +/- 2? CE/ICE PACKS PRESENT Or N?				COOLER TEMP (°C)= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)	
7. VOLATILES FREE OF HEADSPACE?	T				
8. TRIP BLANK PRESENT IN THIS COOLER		1			
9. PROPER SAMPLE CONTAINERS AND VOLUME?	Ø				·
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	J	~ □			-
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	3			•	
12. CORRECTIVE ACTION REPORT FILED?		g	N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP (NFESC) ACC	E AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :					

Use this s' (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if rec. 3d. If samples required pH adjustment, record volume and type of preservative added.

KATAHUIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029		·		LAB (WO PAGE:_ COOLEI		い? 4035 of 3 of 3
CLIENT: I-TEHNUS PROJECT: CID 68		_		COC#_ SDG#_ DATE / DELIVE RECEIV LIMS EI		29-22-95-0930 FFD FY BUL BEY BEY AC
	YES	NO	EXCEPTIONS	COMMENTS		RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?						
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?		V				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	प्					
4. CHAIN OF CUSTODY MATCHES SAMPLES?	Ø			-		
5. TEMPERATURE BLANKS PRESENT?	7		ō	TEMP DI ANIZ TEM	AP (°C)= 0.6	Ast notified voul Calligatory 9/22/94
		<u>ਰ</u>				10x 1/0+/14
6. SAMPLES RECEIVED AT 4°C +/- 2? (CE) ICE PACKS PRESENT (1) N?	u	u	u	COOLER TEMP (*((RECORD COOLE		BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?	3					
8. TRIP BLANK PRESENT IN THIS COOLER		2				
	ā	ā				
9. PROPER SAMPLE CONTAINERS AND VOLUME?	3	_ <u>_</u>				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				•		
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?			u	<u> </u>		
12. CORRECTIVE ACTION REPORT FILED?	Ч	3	N/A			
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HA	ZWRAP (NPESO	ACOE AFCEE OTHER	(STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :						•
LOG - IN NOTES ⁽¹⁾ :						
6			. *			}
		` •				

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

PLEASE	PRINT	IN PEN
--------	-------	--------

Page of

Fax: (207) 775-4029				z .			E PAIN	I IN PE			ge	<u>or</u>
TETRA TECH NUS Contact Phone # Phone # Paul Gaul GAN (850) 385-9899 ()													
Address 1401 OVEN PAR	1401 OVEN PARK DR 100 1740 ATTASSEC 1 - SASC												
Purchase Order # Proj. Name / No. Call Katahdin Quote #													
Bill (if different than above) 813458369319 Address													
Sampler (Print / Sign) Thomas													
LAB USE ONLY WORK ORDER * WP4035 FIL. FIL. FIL. FIL. FIL. FIL. FIL. FIL.													
REMARKS:	WECI MANAGEN			DYDN	DYÖN	OYON	OYON	OYÖN	DYÖN	DYON	NÖYD	NOYD	<u>OYO</u>
				EDB			\$						
SHIPPING INFO: FED EX	્ર∾⊸⊡ UPS		VT	MTBE			W		-3				
TEMP°C TEMP BLAN	K D INTACT	□ NOT	INTACT			Sp	No No	40	13				
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	TEX IN	PAH	Mesta	Dissolved	Ant.o.	101		,	, , , , , , , , , , , , , , , , , , ,	
226LM Ø3Ø1	92198/1137	GW	10	3	a		3		in the second				
22 6 M 0401	9-21-94/1149	GW	10	3	a	1	3	1.	8	18,1 			
22 GLM &661	9-21-99/104	GW	10	3	a	1	3	1					15,4
22 GLM 0301 D	7-21-98 6000	GW	10	3	a								
25GLM0101	1/1245	GN	10	3	2		3	1	1	. 1.	:	:	
25GLM\$541	1745	Gw	10	3	2		3	1 -	1 :				
25GLM\$5\$11	1-	aw	6	3	2				1				4
25GLA47+1	1 /	GK	10	3	2		3		1	:			-
259LX0291	/1615	GN	6	3	2				1				
25GLX4491	1/1210	GW	6	3	2		1- ,				<u>.</u>		
25TLØØZØ1	92194 -	Ging	2	2			121	2	BLA	NK			
	1									-			
	/ /					-	*		*			÷1	
		2.8			*						**	**************************************	
	/ /								en.		• • • •		
COMMENTS		* . * .		,		- 	and the second						į. 1888.
Relinquished By (Signature) D	ate / Time Rec	eived By: (S	Signature	e) I	Relinquis	hed By: (Signature) Da	ate / Ti	me B	ecrived	By; (Sign	ature)
	199 1803 813	34583	369	314				09-2	ر ۱ ۹۷ ۵۰	133	محرار	4_	
Relinquistied By: (Signature) D	ate / Time Reco	eived By: (S	signature	e)	Relinquis	hed By: (Signature) Da	ate / Ti	ne F	ecaived	Byr (Sign	ature)
I ————————————————————————————————————								_		_	: (

P.O. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029 CHAIN OF CUSTODY PLEASE PRINT IN PEN Katahdin P.O. Box 720 Westbrook, ME 04098

		07) 874-2400 207) 775-4029			192 200			PLEAS	E PRIN	IN PE	٧	Pag	je <u> </u>	of <u></u>
Cli	ent Tetra Tech	nus		Cogta	a Cal	ligar		Phone #	554	-492	Fa) **		-
	Tress NH-21 Ave	_	City			ovlusti		tate S			Zip Cod			
- The State of	Purchase Order # Proj. Name / No. Charleston Navel Courtex Katahdin Quote #													
Bil	Bill (if different than above) Address													
Sa	Sampler (Print/Sign) Roger Fronklin/ Ru Lelling Copies To:													
·L	LAB USE ONLY WORK ORDER # 10 P 40345													
Al	KATAHDIN PRO	OJECT MANAGER		1 4847 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OYON	FIL	F⊪L DYDN	Filt. DYDN	Filt. DYDN	Filt. DY DN	Filt. DYDN	Filt.		OYD.
					33.	2	٧,							
	IIPPING INFO:	O UPS		VT	1/3	Z K	V 18							0 3
	MP°C TEMP BLANK	< ☐ INTACT	☐ NOT I	NTACT	1/3	A. B	N. J.							1.6
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	Sal	1		(S)						PPM
	365LB &Z0405	9/2/99/ 1600	S	6	X	4	*			*				7
	36523454465	9/21/44/1120	5	6	4	Y	Ý							23
	36563 \$3 \$4\$5	9/21/94/1430	S	6	Y	X	X							4
		/										ŀ		
		/												
	· Property of									Am Left.				
		/										,	· · · .	
		/												
					ļ								# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
											f		. i.	
		/									şa,		·	
		/			-					, i ee Naa			· · · ·	
		/						-		**				
	<u> </u>	7				3. 5								
COI	MMENTS		•		<u>.</u>				*		1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Jan.
										S. J.	:			
·F		te / Time Recei	ived By: (S		134	Relinquist	ned By: (Signature) Da	te / Tir	ne J	Received I	3y: (Sign	ature)
-			<i>اکا - لک</i> ived By: (S			S830 Relinquist				te / Tir	ne F	Received I	3y. (Gign	fature)
	<u> </u>						·	-	_ _		_ _	· .		

FORMSOURCE INC. 12 (207) 782-3311 FORM # CHN-OF-CSTDY

ORIGINAL 0000108 ORDER NO WP-4035

Project Manager: Andrea J. Colby

ORDER DATE: 09/22/99

REPORT TO: Paul Calligan

Tetra Tech NUS

PHONE: 850/385-9899 FAX: 850/385- 60

1401 Oven Park Dr., Suite 102

DUE: 22 OCT

Tallahassee, FL 32308

FAC. ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PROJECT: CTO #68

SAMPLED BY: T.THOMPSON DELIVERED BY: FEDEX

DISPOSE: AFTER 21 NOV

DPI-II	HED DI. I. INOMISON SEET THE			
ITEM	LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE/TIM	ME RECEIVED	MATRIX
1		21 SEP 113	37 22 SEP	AQ
_	WP4035-2 22GLM0401	21 SEP 114		_
	WP4035-3 22GLM0601	21 SEP 110		
	W1 4055 5 22021.0002			
	DETERMINATION	METHOD OT	Y PRICE	AMOUNT
	Target Analyte List Metals, Total		3 100.00	300.00
	Nitrate as N	353.2	30.00	90.00
	Sulfate	375.4	0.00	0.00
	Volatile Organics by 8260B	SW8260	3 75.00	225.00
	Polynuclear Aromatic Hydrocarbons	EPA 8270	3 125.00	375.00
	Methane Subcontract	:	3 95.00	285.00
	TOTALS		3 425.00	275.00
				and the state of t
	LOG NUMBER SAMPLE DESCRIPTION	SAMPLED DATE/TIL	ME RECEIVED	MATRIX
2	WP4035-6 25GLM0501D	21 SEP	22 SEP	AQ
	WP4035-7 25GLX0201	21 SEP 16:	15	
	WP4035-8 25GLX0401	21 SEP 12	10	
•	DETERMINATION	METHOD OT	Y PRICE	AMOUNT
	Volatile Organics by 8260B		3 75.00	225.00
	Polynuclear Aromatic Hydrocarbons		3 125.00	375.00
	Lead, Total		3 20.00	60.00
	•			-
	TOTALS		3 220.00	660.00

Project Manager: Andrea J. Colby ORDER NO WP-4035 ORDER DATE: 09/22/99 REPORT TO: Paul Calligan PHONE: 850/385-9899 Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 22 OCT Tallahassee, FL 32308 FAC. ID: CNC CHARLESTON ACCOUNTS PAYABLE PHONE: 412/921-7090 INVOICE: TETRA TECH NUS, INC. PO: N7912-P99264 FOSTER PLAZA 7, 661 ANDERSEN DR. PITTSBURGH, PA 15220 PROJECT: CTO #68 DELIVERED BY: FEDEX SAMPLED BY: T.THOMPSON DISPOSE: AFTER 21 NOV LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED 21 SEP 0000 22 SEP WP4035-9 22GLM0301D OTY METHOD PRICE DETERMINATION AMOUNT Volatile Organics by 8260B SW8260 1 75.00 75.00 Polynuclear Aromatic Hydrocarbons EPA 8270 1 125.00 125.00 Target Analyte List Metals, Total 1 100.00 100.00 TOTALS 300.00 300.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP4035-10 25TL00201 21 SEP 22 SEP AO METHOD OTY PRICE DETERMINATION TRUOMA Volatile Organics by 8260B SW8260 1 75.00 75.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED WP4035-11 36SLB020405 21 SEP 1600 22 SEP SL WP4035-12 36SLB050405 21 SEP 1120 WP4035-13 36SLB030405 21 SEP 1430 METHOD **DETERMINATION** OTY PRICE TUUOMA Volatile Organics by 8260B SW8260 85.00 255.00 3

CLP/CIP SO Solids-Total Residue (TS) 3 0.00 0.00 Polynuclear Aromatic Hydrocarbons EPA 8270 3 135.00 405.00 Target Analyte List Metals, Total 3 100.00 300.00 TPH Subcontract 3 75.50 225.00 395.00 TOTALS 1185.00

LABORATORY ORDER CONTINUED ON PAGE 3

ORDER NO WP-4035

Project Manager: Andrea J. Colby

ORDER DATE: 09/22/99 PHONE: 850/385-9899

REPORT TO: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

FAX: 850/385-9

DUE: 22 OCT

FAC. ID: CNC CHARLESTON

INVOICE: ACCOUNTS PAYABLE

TETRA TECH NUS, INC.

FOSTER PLAZA 7, 661 ANDERSEN DR.

PITTSBURGH, PA 15220

PHONE: 412/921-7090

PO: N7912-P99264

PROJECT: CTO #68

SAMPLED BY: T.THOMPSON DELIVERED BY: FEDEX DISPOSE: AFTER 21 NOV

	LOG NUMBER	SAMPLE DESCRIPTION	SAMPLED D	ATE/TIME	RECEIVED	MATRIX
6	WP4035-4	25GLM0101	21	SEP 1205	22 SEP	AQ
	WP4035-5	25GLM0501	21	SEP 1705		

DETERMINATION	METHOD	OTY	PRICE	AMOUNT
Volatile Organics by 8260B	SW8260	2	75.00	150.00
Polynuclear Aromatic Hydrocarbons	EPA 8270	2	125.00	250.00
Methane Subcontract		2	95.00	190.00
Nitrate as N	353.2	2	30.00	60.00
Sulfate	375.4	2	0.00	0.00
Lead, Total	200.7/6010	2	20.00	40.00
TOTALS		2	345.00	690.00

ORDER NOTE: QC-II+ W/NARRATIVE

DD(KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR. PITTSBURGH, PA 15220

REPORT & DISK

INVOICE: With Report

TOTAL ORDER AMOUNT \$4,185.00

This is NOT an Invo:

AJC/BKR/WEST.AJC(dw)

09-29Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
#	# flag denotes surrogate compound recovery is out of criteria.
В	'B' flag denotes detection of this analyte in the laboratory method blank analyzed concurrently with the sample.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
A-1	Insufficient sample was provided to enable laboratory to achieve the laboratory's standard Practical Quantitation Level.
DL	'DL' flag denotes inability to calculate surrogate recovery due to sample dilution.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
O-13	Internal standard area(s) are out of criteria. Reanalysis confirmedmatrix interference.
O-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0101

Matrix: WATER

SDG Name:

WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-004

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	C	Q	M	DF	
7439-92-1	LEAD	3.9	В		P	1	

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-4035-4

Report Date: 10/20/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 7 of 8

SAMPLE DESCRIPTION	MAT	RIX		SAMPLED	BY	SAMPLED D	ATE	RECEIVED
25GLM0101	Aqu	eous		T.THOMPS	OI/1	09/21/9	9	09/22/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	0.29 160.	mg/L mg/L	1.0 10		353.2 300.0	09/23/99 09/24/99	KW CF	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/20/99

LJO/ejnajc(dw)/bad/msm PI23NOW1

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PLAZA 7
661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-4

SDG:

WP4035 10/7/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 9/30/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0101	AQ	9/21/99	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	64	%	1.0				
2-FLUOROBIPHENYL	72	%	1.0				
TERPHENYL-D14	97	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-4

SDG:

WP4035

Report Date:

10/6/99

PO No.: Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/22/99

Sample Description	Matrix	Samp	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0101	AQ	9/	21/99	9/22/99	9/22/99	JSS	5030	JSS
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE	•	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	•	<5	ug/L	1.0	5	5		
ETHYLBENZENE	•	<5	ug/L	1.0	5	5		
NAPHTHALENE	•	<5	ug/L	1.0	5	5	,	
MTBE	•	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	g	96	%	1.0				
1,2-DICHLOROETHANE-D4	1	01	%	1.0				
TOLUENE-D8	9	98	%	1.0				
P-BROMOFLUOROBENZENE	16	06	%	1.0				

Report Notes:

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0501

Matrix: WATER

SDG Name:

WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-005

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	
7439-92-1	LEAD	7.3			P	1	

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-4035-5

Report Date: 10/20/99 PO No. : N7912-P99

PO No. : N7912-P99264 Project : CIO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 8 of 8

SAMPLE DESCRIPTION	MAI	RIX		SAMPLED	BY	SAMPLED I	ATE	RECEIVED
25GLM0501	Aqı	ieous		T.THOMPS	O1/1	09/21/9	9	09/22/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Nitrate as N Sulfate	<0.050 40.	mg/L mg/L	1.0		353.2 300.0	09/23/99 09/24/99	KW CF	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

10/20/99

LJO/ejnajc(dw)/bad/msm PI23NOW1

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-5

SDG:

WP4035

Report Date: PO No.:

10/7/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

9/30/99 Date Analyzed:

Sample Description	Matrix Sa	mpied Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501	AQ	9/21/99	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	E280	ug/L	1.1	10	10		
2-METHYLNAPHTHALENE	100	ug/L	1,1	10	10		
ACENAPHTHYLENE	<10	ug/L	1.1	10	10		
ACENAPHTHENE	<10	ug/L	1.1	10	10		
FLUORENE	<10	ug/L	1.1	10	10		
PHENANTHRENE	<10	ug/L	1.1	10	10		
ANTHRACENE	<10	ug/L	1.1	10	10		
FLUORANTHENE	<10	ug/L	1.1	10	10		
PYRENE	<10	ug/L	1.1	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.1	10	10		
CHRYSENE	<10	ug/L	1.1	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.1	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.1	10	10		
BENZO[A]PYRENE	<10	ug/L	1.1	10	10		
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.1	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.1	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.1	10	10		
NITROBENZENE-D5	60	%	1.1				
2-FLUOROBIPHENYL	100	%	· 1.1				
TERPHENYL-D14	79	%	1.1				

Report Notes:

E, A-1

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-5DL

SDG:

WP4035

Report Date: PO No.:

10/7/99

Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/1/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501	AQ	9/21/99	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	480	ug/L	4.2	42	10		,
2-METHYLNAPHTHALENE	160	ug/L	4.2	42	10		
ACENAPHTHYLENE	<42	ug/L	4.2	42	10		
ACENAPHTHENE	<42	ug/L	4.2	42	10		
FLUORENE	<42	ug/L	4.2	42	10		
PHENANTHRENE	<42	ug/L	4.2	42	10		
ANTHRACENE	<42	ug/L	4.2	42	10		
FLUORANTHENE	<42	ug/L	4.2	42	10		
PYRENE	<42	ug/L	4.2	42	10		
BENZO[A]ANTHRACENE	<42	ug/L	4.2	42	10		
CHRYSENE	<42	ug/L	4.2	42	10		
BENZO[B]FLUORANTHENE	<42	ug/L	4.2	42	10		
BENZO[K]FLUORANTHENE	<42	ug/L	4.2	42	10		
BENZO[A]PYRENE	<42	ug/L	4.2	42	10		
INDENO[1,2,3-CD]PYRENE	<42	ug/L	4.2	42	10		
DIBENZ[A,H]ANTHRACENE	<42	ug/L	4.2	42	10		
BENZO[G,H,I]PERYLENE	<42	ug/L	4.2	42	10		
NITROBENZENE-D5	DL	%	4.2				
2-FLUOROBIPHENYL	DL	%	4.2				
TERPHENYL-D14	DL	%	4.2		•	-	

Report Notes:

O-2, DL

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-5

SDG:

WP4035

Report Date: PO No.:

10/6/99 N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/23/99

Sample Description	Matrix	Samı	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501	AQ	9/	21/99	9/22/99	9/23/99	НМР	5030	НМР
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE	E2	7000	ug/L	50	250	5		
TOLUENE	E3	0000	ug/L	50	250	5		
1,2-DIBROMOETHANE	<	250	ug/L	50	250	5		
ETHYLBENZENE	4	300	ug/L	50	250	5		
NAPHTHALENE	(660	ug/L	50	250	5		
MTBE	E2	3000	ug/L	50	250	5		
TOTAL XYLENES	14	4000	ug/L	50	250	5		
DIBROMOFLUOROMETHANE		83	%	50				
1,2-DICHLOROETHANE-D4	#	# 64	%	50				
TOLUENE-D8		98	%	50				
P-BROMOFLUOROBENZENE		100	%	50				

Report Notes:

E, #, O-2

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-5DL

SDG:

WP4035

Report Date:

10/6/99

PO No.: Project:

N7912-P99264 CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/24/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501	AQ	9	/21/99	9/22/99	9/24/99	KMC	5030	КМС
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE	2:	5000	ug/L	200	1000	5		
TOLUENE	3	5000	ug/L	200	1000	5		
1,2-DIBROMOETHANE	<	1000	ug/L	200	1000	5		
ETHYLBENZENE	3	000	ug/L	200	1000	5		
NAPHTHALENE	J	700	ug/L	200	1000	5		
MTBE	33	3000	ug/L	200	1000	5		
TOTAL XYLENES	1:	2000	ug/L	200	1000	5		
DIBROMOFLUOROMETHANE	•	105	%	200				
1,2-DICHLOROETHANE-D4	•	111	%	200				
TOLUENE-D8	•	102	%	200				
P-BROMOFLUOROBENZENE	•	100	%	200				

Report Notes:

J, O-2

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLM0501D

Matrix: WATER

SDG Name:

WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-006

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	
7439-92-1	LEAD	7.0			P	1	•

Comments:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-6

SDG:

WP4035

Report Date: PO No.:

10/7/99

Project:

N7912-P99264

CTO #68

% Solids:

N/A

Method:

Date Analyzed:

EPA 8270 9/30/99

Sample Description	Matrix	Sample	d Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501D	· AQ	9/21/	······································	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	E2	220	 ug/L	1.0	10	10		
2-METHYLNAPHTHALENE	6	i 8	ug/L	1.0	10	10		
ACENAPHTHYLENE	<	10 1	ug/L	1.0	10	10		
ACENAPHTHENE	<	10 ı	ug/L	1.0	10	10		
FLUORENE	<	10 i	ug/L	1.0	10	10		
PHENANTHRENE	<	10 ı	ug/L	1.0	10	10		
ANTHRACENE	<	10 ι	ug/L	1.0	10	. 10		
FLUORANTHENE	<	10 ι	ug/L	1.0	10	10		
PYRENE	<	10 ι	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	. <	10 t	ug/L	1.0	10	10		
CHRYSENE	<	10 ι	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<	10 ι	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<	10 ι	ıg/L	1.0	10	10		
BENZO[A]PYRENE	<	10 ι	ug/L	1.0	10	10		
INDENO[1,2,3-CD]PYRENE	¸ <'		ıg/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<	10 ι	.g/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<	10 ι	ıg/L	1.0	10	10		
NITROBENZENE-D5	4	8	%	1.0				
2-FLUOROBIPHENYL	7	3	%	1.0				

1.0

Report Notes:

TERPHENYL-D14

Ε

61

%

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-6DL

SDG:

WP4035 10/7/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/1/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501D	AQ	9/21/99	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Re	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	4	70 ug/L	4.0	40	10		
2-METHYLNAPHTHALENE	17	70 ug/L	4.0	40	10		
ACENAPHTHYLENE	<	40 ug/L	4.0	40	10		
ACENAPHTHENE	<	40 ug/L	4.0	40	10		
FLUORENE	<	40 ug/L	4.0	40	10		
PHENANTHRENE	• <	40 ug/L	4.0	40	10		
ANTHRACENE	<4	40 ug/L	4.0	40	10		
FLUORANTHENE	<	40 ug/L	4.0	40	10		
PYRENE	<4	40 ug/L	4.0	40	10		
BENZO[A]ANTHRACENE	<	40 ug/L	4.0	40	10		
CHRYSENE	<4	40 ug/L	4.0	40	10		
BENZO[B]FLUORANTHENE	. <	40 ug/L	4.0	40	10		
BENZO[K]FLUORANTHENE	<	40 ug/L	4.0	40	10		
BENZO[A]PYRENE	<4	40 ug/L	4.0	40	10		
INDENO[1,2,3-CD]PYRENE	<4	40 ug/L	4.0	40	10		
DIBENZ[A,H]ANTHRACENE	<	40 ug/L	4.0	40	10		
BENZO[G,H,I]PERYLENE	<	40 ug/L	4.0	40	10		
NITROBENZENE-D5	D	L %	4.0				
2-FLUOROBIPHENYL	D	L %	4.0				
TERPHENYL-D14	ם	L %	4.0				

Report Notes:

O-2, DL

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-6

SDG:

WP4035

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/23/99

Sample Description	Matrix	Samı	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501D	AQ 9/21/99		9/22/99	9/23/99	HMP	5030	НМР	
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE	E20	5000	ug/L	50	250	5		
TOLUENE	E3 ⁻	1000	ug/L	50	250	5		
1,2-DIBROMOETHANE	. <2	250	ug/L	50	250	5		
ETHYLBENZENE	43	300	ug/L	50	250	5		
NAPHTHALENE	7	80	ug/L	50	250	5		
MTBE	E23	3000	ug/L	50	250	5 `		
TOTAL XYLENES	15	000	ug/L	50	250	5		
DIBROMOFLUOROMETHANE	8	32	%	50				
1,2-DICHLOROETHANE-D4	#	63	%	50				
TOLUENE-D8	9	7	%	50				
P-BROMOFLUOROBENZENE	1	01	%	50				

Report Notes:

E, #, O-2

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-6DL

SDG:

WP4035 10/6/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/24/99

Sample Description	Matrix	Samı	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLM0501D	AQ 9/21/99		9/22/99	9/24/99	KMC	5030	KMC	
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE	26	5000	ug/L	200	1000	5		
TOLUENE	38	3000	ug/L	200	1000	5		
1,2-DIBROMOETHANE	<1	1000	ug/L	200	1000	5		
ETHYLBENZENE	3:	200	ug/L	200	1000	5		
NAPHTHALENE	J:	760	ug/L	200	1000	5		
MTBE	33	3000	ug/L	200	1000	5		
TOTAL XYLENES	13	8000	ug/L	200	1000	5		
DIBROMOFLUOROMETHANE	1	103	%	200				
1,2-DICHLOROETHANE-D4	1	80	%	200				
TOLUENE-D8	1	03	%	200				
P-BROMOFLUOROBENZENE	1	00	%	200				

Report Notes:

J, O-2

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25GLX0201

Matrix: WATER

SDG Name:

WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-007

Concentration Units (ug/L or mg/Kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M	DF	· · · · · · · · · · · · · · · · · · ·
7439-92-1	LEAD	1.6	В		P	1	

Comments:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-7

SDG:

WP4035 10/7/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

N/A **EPA 8270**

Date Analyzed: 9/30/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLX0201	AQ	9	/21/99	9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE		:10	ug/L	1.0	. 10	10		
2-METHYLNAPHTHALENE	<	10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<	:10	ug/L	1.0	10	10		
ACENAPHTHENE	<	10	ug/L	1.0	10	10		
FLUORENE	<	10	ug/L	1.0	10	10		
PHENANTHRENE	<	10	ug/L	1.0	10	10		
ANTHRACENE	<	10	ug/L	1.0	10	10		
FLUORANTHENE	<	10	ug/L	1.0	10	10		
PYRENE	<	10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<	10	ug/L	1.0	10	10		
CHRYSENE	<	10	ug/L	1.0	10	10		
BENZO(B)FLUORANTHENE	• <	10 -	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<	10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<	10	ug/L	1.0	10	10		
NDENO[1,2,3-CD]PYRENE	<	10	ug/L	1.0	10	10		•
DIBENZ[A,H]ANTHRACENE	<	10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<	10	ug/L	1.0	10	10		
NITROBENZENE-D5	4	6	%	1.0				
2-FLUOROBIPHENYL	5	6	%	1.0				

1.0

61

Report Notes:

TERPHENYL-D14

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-7

SDG:

WP4035

Report Date: PO No.:

10/6/99

Project:

N7912-P99264 **CTO #68**

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/23/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ewi'd Du	Ext. Method	Analyst
		Odmpied Date	ivec a pare	LAL Date	Ext a by	EXT. Method	Analyst

25GLX0201	, QA	9/21/99	9/22/99	9/23/99	HMP	5030	НМР
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	83	%	1.0		-		
1,2-DICHLOROETHANE-D4	73	%	1.0				
TOLUENE-D8	93	%	1.0				
P-BROMOFLUOROBENZENE	92	%	1.0				

Report Notes:

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWPI24ICW1

Matrix: WATER

SDG Name: WP4035

QC Batch ID: PI24ICW1

Concentration Units (ug/L or mg/Kg.dry weight): ug/L

Analyte	RESULT	С	
ALUMINUM	19.080	В	
ANTIMONY	1.810	Ü	
ARSENIC	2.070	Ü	
BARIUM	1.810	В	
BERYLLIUM	0.330	Ū	
CADMIUM	1.940	Ū	
CALCIUM	27.640	В	
CHROMIUM	4.310	Ū ·	
COBALT	4.450	Ū	
COPPER	1.620	Ū	
IRON	8.920	В	
LEAD	1.090	Ū	
MAGNESIUM	17.160	Ü	
MANGANESE	0.970	U	
NICKEL	13.210	Ü	
POTASSIUM	449.540	U	
SELENIUM	2.570	Ü	
SILVER	2.540	U	
SODIUM	84.140	В	
THALLIUM	4.490	U	
VANADIUM	3.580	Ū	
ZINC	5.190	В	

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-8

SDG:

WP4035 10/7/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

EPA 8270

Date Analyzed: 10/1/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Änalyst
25GLX0401	AQ 9/21/99		9/22/99	9/23/99	LAP	EPA 3510	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<1:	2 ug/L	1.2	12	10		
2-METHYLNAPHTHALENE	<12	_	1.2	12	10		
ACENAPHTHYLENE	<12	2 ug/L	1.2	12	10		
ACENAPHTHENE	<12	2 ug/L	1.2	12	10		
FLUORENE	<12	2 ug/L	1.2	12	10		
PHENANTHRENE	<12	2 ug/L	1.2	12	.10		
ANTHRACENE	<12	2 ug/L	1.2	12	10		
FLUORANTHENE	<12		1.2	12	10		
PYRENE	<12	2 ug/L	1.2	12	10		
BENZO[A]ANTHRACENE	<12	2 ug/L	1.2	12	10		
CHRYSENE	<12	2 ug/L	1.2	12	10		
BENZO[B]FLUORANTHENE	<12	2 ug/L	1.2	12	10		
BENZO[K]FLUORANTHENE	<12	e ug/L	1.2	12	10		
BENZO[A]PYRENE	<12	e ug/L	1.2	12	10		
NDENO[1,2,3-CD]PYRENE	<12	ug/L	1.2	12	10		
DIBENZ[A,H]ANTHRACENE	<12	ug/L	1.2	12	10		
BENZO[G,H,I]PERYLENE	<12	ug/L	1.2	12	10		
IITROBENZENE-D5	54	%	1.2				
-FLUOROBIPHENYL	64	%	1.2				
ERPHENYL-D14	74	%	1.2			-	

Report Notes:

A-1

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

_

Lab Number:

WP4035-8

SDG:

WP4035

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

...

-- -- -

N/A

Method:

SW8260

Date Analyzed: 9/23/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25GLX0401	AQ 9/21/		/21/99	21/99 9/22/99		JSS	5030	JSS
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE		<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	•	<5	ug/L	1.0	5	5		
ETHYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE	•	<5	ug/L	1.0	5	5		
MTBE	1	30	ug/L	1.0	5	5		
TOTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	8	38	%	1.0	J	•		
1,2-DICHLOROETHANE-D4	8	37	%	1.0				
TOLUENE-D8	ç	96	%	1.0				
P-BROMOFLUOROBENZENE	1	01	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP4035-10

SDG:

WP4035

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 9/23/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25TL00201	AQ	9.	/21/99	9/22/99	9/23/99	JSS	5030	JSS
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<5	ug/L	1.0	5	5		
TOLUENE	•	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	•	<5	ug/L	1.0	5	5		
THYLBENZENE		<5	ug/L	1.0	5	5		
NAPHTHALENE		<5	ug/L	1.0	5	5		
MTBE		<5	ug/L	1.0	.5	5		
OTAL XYLENES		<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	:	88	%	1.0				
,2-DICHLOROETHANE-D4	ŧ	34	%	1.0				
OLUENE-D8	9	96	%	1.0				
P-BROMOFLUOROBENZENE	9	99	%	1.0				

Report Notes:

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSPJ01ICS0

Matrix: SOIL

SDG Name: WP4035

QC Batch ID: PJ01ICS0

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

ALUMINUM ANTIMONY ARSENIC ARSENIC BARIUM BERYLLIUM CADMIUM CALCIUM CALCIUM CHROMIUM COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT COPPER COBALT CO	Analyte	RESULT	С	
ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CADMIUM CALCIUM CALCIUM COBALT COPPER COPPER MANGANESE MANGANESE NICKEL POTASSIUM SILVER SODIUM THALLIUM VANADIUM 0.210 U U U U U U U U U U U U U	ALUMINUM	9,223	B	
ARSENIC BARIUM BARIUM 0.061 B BERYLLIUM 0.020 U CADMIUM 0.190 U CALCIUM 16.324 CHROMIUM 0.407 B COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM VANADIUM 0.060 U U U U U U U U U U U U U U U U U U	ANTIMONY		_	
BARIUM 0.061 B BERYLLIUM 0.020 U CADMIUM 0.190 U CALCIUM 16.324	ARSENIC		_	
BERYLLIUM CADMIUM CALCIUM CALCIUM 16.324 CHROMIUM 0.407 B COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 5ELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM VANADIUM 0.060 U ZINC	BARIUM			
CADMIUM 0.190 U CALCIUM 16.324 CHROMIUM 0.407 B COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	BERYLLIUM			
CALCIUM 16.324 CHROMIUM 0.407 B COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	CADMIUM			
CHROMIUM 0.407 B COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM VANADIUM 0.450 U ZINC U VANADIUM	CALCIUM		U	
COBALT 0.060 U COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM VANADIUM 0.060 U	CHROMIUM		R	
COPPER 0.060 U IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	COBALT		_	
IRON 0.669 B LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	COPPER			
LEAD 0.110 U MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	IRON			
MAGNESIUM 1.770 B MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	LEAD			
MANGANESE 0.053 B NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	MAGNESIUM			
NICKEL 1.320 U POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	MANGANESE		_	
POTASSIUM 44.950 U SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	NICKEL			
SELENIUM 0.260 U SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	POTASSIUM			
SILVER 0.070 U SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	SELENIUM		_	
SODIUM 11.547 THALLIUM 0.450 U VANADIUM 0.060 U	SILVER		_	
THALLIUM 0.450 U VANADIUM 0.060 U	SODIUM		O.	
VANADIUM 0.060 U	THALLIUM		Īī	
ZINC	VANADIUM		_	
	ZINC	0.153	В	

7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSSPJ01ICS0

Matrix: SOIL

SDG Name: WP4035

QC Batch ID: PJ01ICS0

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	TRUE	FOUND	% R	LIMIT	rs (%)
ALUMINUM	5720.0	5284.82	92.4	66	134
ANTIMONY	26.6	30.85	116.0	13	186
ARSENIC	163.0	179.02	109.8	62	138
BARIUM	195.0	246.23	126.3	66	134
BERYLLIUM	78.9	86.75	109.9	72	128
CADMIUM	114.0	115.92	101.7	74	124
CALCIUM	1280.0	1286.99	100.5	70	130
CHROMIUM	175.0	202.59	115.8	69	131
COBALT	73.7	83.62	113.5	70	130
COPPER	91.0	95.87	105.4	71	128
IRON	9080.0	8892.45	97.9	53	146
LEAD	66.0	83.22	126.1	68	132
MAGNESIUM	1210.0	1178.63	97.4	73	126
MANGANESE	261.0	289.32	110.9	78	122
NICKEL	68.3	75.55	110.6	56	144
POTASSIUM	1500.0	1373.71	91.6	64	136
SELENIUM	123.0	123.79	100.6	74	126
SILVER	57.2	53.95	94.3	71	128
SODIUM	1380.0	1402.75	101.6	68	133
THALLIUM	80.0	99.81	124.8	57	142
VANADIUM	95.4	108.52	113.8	68	132
ZINC	190.0	210.74	110.9	76	124

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSPJ07HGS1

Matrix: SOIL

SDG Name: WP4035

QC Batch ID: PJ07HGS1

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	RESULT	С	
MERCURY	0.010	U	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSSPJ07HGS1

Matrix: SOIL

SDG Name: WP4035

QC Batch ID: PJ07HGS1

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	TRUE	FOUND	% R	LIMITS (%)
MERCURY	1.8	2.32	128.9	54 146

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWPI24ICW1

Matrix: WATER

SDG Name: WP4035

QC Batch ID: PI24ICW1

Concentration Units (ug/L or mg/Kg.dry weight): ug/L

Analyte	RESULT	С	
ALUMINUM	19.080	В	
ANTIMONY	1.810	Ū	
ARSENIC	2.070	Ū	
BARIUM	1.810	В	
BERYLLIUM	0.330	Ū	
CADMIUM	1.940	Ü	
CALCIUM	27.640	В	
CHROMIUM	4.310	Ū ·	
COBALT	4.450	U	
COPPER	1.620	Ū	
IRON	8.920	В	
LEAD	1.090	Ū	
MAGNESIUM	17.160	Ū	
MANGANESE	0.970	บ	
NICKEL	13.210	Ü	
POTASSIUM	449.540	U	
SELENIUM	2.570	Ū	
SILVER	2.540	U	
SODIUM	84.140	В	
THALLIUM	4.490	U	
VANADIUM	3.580	Ü	
ZINC	5.190	В	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWPI24ICW1

Matrix: WATER

SDG Name: WP4035

QC Batch ID: PI24ICW1

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	TRUE	FOUND	% R	LIMIT	'S (%)
ALUMINUM	2000.0	1957.03	97.9	80	120
ANTIMONY	500.0	501.39	100.3	80	120
ARSENIC	2000.0	1935.06	96.8	80	120
BARIUM	2000.0	2102.62	105.1	80	120
BERYLLIUM	50.0	52.87	105.7	80	120
CADMIUM	50.0	53.05	106.1	80	120
CALCIUM	2500.0	2678.37	107.1	80	120
CHROMIUM	200.0	212.83	106.4	80	120
COBALT	500.0	527.54	105.5	80	120
COPPER	250.0	248.67	99.5	80	120
IRON	1000.0	1070.93	107.1	80	120
LEAD	500.0	550.63	110.1	80	120
MAGNESIUM	5000.0	4828.88	96.6	80	120
MANGANESE	500.0	527.50	105.5	80	120
NICKEL	500.0	539.85	108.0	80	120
POTASSIUM	25000.0	23749.69	95.0	80	120
SELENIUM	2000.0	1853.45	92.7	80	120
SILVER	50.0	43.11	86.2	80	120
SODIUM	7500.0	7501.04	100.0	80	120
THALLIUM	2000.0	2216.78	110.8	80	120
VANADIUM	500.0	524.53	104.9	80	120
ZINC	500.0	499.80	100.0	80	120

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWPI25HGW0

Matrix: WATER

SDG Name: WP4035

QC Batch ID: PI25HGW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	RESULT	С	
MERCURY	0.020	U	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWPI25HGW0

Matrix: WATER

SDG Name: WP4035

QC Batch ID: PI25HGW0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
MERCURY	5.0	4.86	97.2	80	120

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 22GLM0601S

Matrix: WATER

SDG Name: WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-003S

Concentration Units (ug/L or mg/Kg dry weight): ug/L

	Spiked	p.v		Sample Spike				Control Lim	rol Limits (%R)		
Analyte	Sample Result C	Result	C	Added	%R	Q	Low	High	M		
ALUMINUM	2346.3500	136.5400		2000	110.5		. 75	125	P		
ANTIMONY	545.4400	-1.4000	U	500	109.1		75	125	·P		
ARSENIC	2239.4800	6.0600	В	2000	111.7		75	125	P		
BARIUM	2226.8100	65.3700		2000	108.1		75	125	P		
BERYLLIUM	55.9100	0.2500	U .	50	111.8		75	125	P		
CADMIUM	59.5000	1.0800	U	50	119.0		75	125	P		
CALCIUM	395830.5000	397131.8300		2500	-52.1		75	125	P		
CHROMIUM	216.7400	-3.8000	U	200	108.4		75	125	P		
COBALT	642.8200	102.4300		500	108.1		75	125	P		
COPPER	269.6900	-0.9900	U	250	107.9		75	125	P		
IRON	18672.9600	17767.2500		1000	90.6		75	125	P		
LEAD	527.4600	1.3400	В	500	105.2		75	125	P		
MAGNESIUM	152163.8000	147898.0800		5000	85.3		75	125	P		
MANGANESE	6093.8900	5608.3500		500	97.1		75	125	P		
NICKEL	588.7900	31.0100	В	500	111.6		75	125	P		
POTASSIUM	41558.4200	14461.4900		25000	108.4		75	125	P		
SELENIUM	2109.6200	0.2100	U	2000	105.5		75	125	P ,		
SILVER	47.5900	-3.9200	U	50	95.2		75	125	P		
SODIUM	1587538.3300	1600947.6300		7500	-178.8		75	125	P		
THALLIUM	2070.8200	-0.3700	U	2000	103.5		75	125	P		
VANADIUM	550.5300	-1.6200		500	110.1		75 75	125	P		
ZINC	573.9200	29.1400		500	109.0		75	125	P		

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 22GLM0601S

Matrix: WATER

SDG Name: WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-003P

Concentration Units (ug/L or mg/Kg dry weight): ug/L

	Spiked Sample		Spike			Control Limits (%R)			
Analyte	Sample Result C	Result	C	Added	%R	Q	Low	Hìgh	M
ALUMINUM	2349.6500	136.5400		2000	110.7		75	125	P
ANTIMONY	546.4900	-1.4000	U	500	109.3		75	125	P
ARSENIC	2246.7500	6.0600	В	2000	112.0		75	125	P
BARIUM	2248.6000	65.3700		2000	109.2		75	125	P
BERYLLIUM	57.0300	0.2500	U	50	114.1		75	125	P
CADMIUM	61.1500	1.0800	U	50	122.3		75	125	P
CALCIUM	397133.0500	397131.8300		2500	0.0		75	125	P
CHROMIUM	217.6200	-3.8000	U	200	108.8		75	125	P
COBALT	652.8700	102.4300		500	110.1		75	125	P
COPPER	272.5500	-0.9900	U	250	109.0		75	125	P
IRON	19120.2600	17767.2500		1000	135.3		75	125	P
LEAD	521.9400	1.3400	В	500	104.1		75	125	P
MAGNESIUM	155943.0800	147898.0800		5000	160.9		75	125	P
MANGANESE	6243.1600	5608.3500		500	127.0		75	125	P
NICKEL	594.4000	31.0100	В	500	112.7		75	125	P
POTASSIUM	42151.4700	14461.4900		25000	110.8		75	125	P
SELENIUM	2112.5200	0.2100	U	2000	105.6		75	125	P
SILVER	47.9100	-3.9200	U	50	95.8		75	125	P
SODIUM	1639213.8600	1600947.6300		7500	510.2		75	125	P
THALLIUM	2059.0100	-0.3700	U	2000	103.0		75	125	P
VANADIUM	555.3900	-1.6200	U	500	111.1		75	125	P
ZINC	584.0600	29.1400		-500	111.0		75	125	P

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Client Field ID: 22GLM0601

Matrix: WATER

SDG Name:

WP4035

Percent Solids: 0.00

Lab Sample ID: WP4035-003

Concentration Units (ug/L or mg/Kg dry weight): ug/L

Analyte	Control Limits	Spike Result	C Spike Dup. Result	C RPD	Q M
ALUMINUM		2346.3500	2349.6500	0.1	P
ANTIMONY		545.4400	546.4900	0.2	P
ARSENIC		2239.4800	2246.7500	0.3	P
BARIUM		2226.8100	2248.6000	1.0	P
BERYLLIUM		55.9100	57.0300	2.0	P
CADMIUM		59.5000	61.1500	2.7	P
CALCIUM		395830.5000	397133.0500	0.3	P
CHROMIUM		216.7400	217.6200	0.4	P
COBALT		642.8200	652.8700	1.6	P
COPPER		269.6900	272.5500	1.1	P
IRON		18672.9600	19120.2600	2.4	P
LEAD		527.4600	521.9400	1.1	P
MAGNESIUM		152163.8000	155943.0800	2.5	P
MANGANESE		6093.8900	6243.1600	2.4	P
NICKEL		588.7900	594.4000	0.9	P
POTASSIUM		41558.4200	42151.4700	1.4	P
SELENIUM		2109.6200	2112.5200	0.1	P
SILVER	15	47.5900	47.9100	0.7	P
SODIUM		1587538.3300	1639213.8600	3.2	P
THALLIUM		2070.8200	2059.0100	0.6	P
VANADIUM		550.5300	555.3900	0.9	P
ZINC		573.9200	584.0600	1.8	P

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 36SLB020405S

Matrix: SOIL

SDG Name:

WP4035

Percent Solids: 75.5

Lab Sample ID: WP4035-011S

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

	Spiked	Sample	Spike		Control Lin	nits (%R)	•
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	M
MERCURY	0.3277	0.1696	0.18	87.8	75	125	CV

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 36SLB020405S

Matrix: SOIL

SDG Name:

WP4035

Percent Solids: 75.5

Lab Sample ID: WP4035-011P

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

	Spiked	Sample	Spike		Control Lin	nits (%R)	-
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	M
MERCURY	0.3739	0.1696	0.18	113.5	75	125	CV

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Client Field ID: 36SLB020405

Matrix: SOIL

SDG Name:

WP4035

Percent Solids: 75.5

Lab Sample ID: WP4035-011

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	Control Limits	Spike Result	C Spike Dup. Result	C RPD	Q	M
MERCURY		0.3277	0.3739	13.2	:	CV

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LABORATORY METHOD BLANK RESULTS

SAMPLE DESCRIPTION		MATRIX			
METHOD BLANK		Aqueous			
		========	========	=====	
ANALYTE	ANALYZED UNITS	METHOD	RESULT	NOTES	
Nitrate as N	09-23-99 mg/L	353.2	<0.050		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LAB CONTROL SPIKE RESULTS

SAMPLE DESCRIPTION				MATRI	MATRIX			
					======	======		
LAB CONTROL SPIKE				Aqueo	นธ			
					=====		=====	
ANALYTE	ANALYZED UNITS	METHOD	SPK	SPK RES	% REC	LIMITS	NOTES	
Nitrate as N	09-23-99 mg/L	353.2	1.00	0.906	91			

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF DUPLICATE SAMPLE RESULTS

SAMPLE DESCRIPTION						MATRIX		
QC DUPLICATE					Aqueous			
ANALYTE	ANALYZED UNITS	METHOD	*PQL	RESULT	DUP #1	RPD	LIMITS	NOTES
Nitrate as	09-23-99 mg/L	353.2	0.050	<0.050	<0.050	-0.00		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF SAMPLE MATRIX SPIKE RESULTS

SAMPLE DESCRIP	TION				MAIR	XIX	-	
=======================================								
QC SPIKE					Aque	ous		
=======================================					- -#====== ===	======		=====
ANALYTE	ANALYZED UNITS	METHOD	SPK	RESULT	SPK RES	% REC	LIMITS	NOTES
Nitrate as N	09-23-99 mg/L	353.2	0.500	<0.050	0.397	79		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LABORATORY METHOD BLANK RESULTS

SAMPLE DESCRIPTION				MATRIX	•	•
	======				========	======
METHOD BLANK				Aqueous		
	======					
ANALYTE	,	ANALYZED	UNITS	METHOD	RESULT	NOTES
Sulfate		10-11-99	mg/L	375.4	<1.0	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LAB CONTROL SPIKE RESULTS

SAMPLE DESCRIPTION				MATR	IX		
						======	=====
LAB CONTROL SPIKE				Aque	ous		
=======================================						======	
ANALYTE	ANALYZED UNITS	METHOD	SPK	SPK RES	* REC	LIMITS	NOTES
Sulfate	10-11-99 mg/L	375.4	250	221	88		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LABORATORY METHOD BLANK RESULTS

SAMPLE DESCRIPTION			MATRIX		
			=======		
METHOD BLANK			Aqueous		
	********		=======	=========	
ANALYTE	ANALYZED	UNITS	METHOD	RESULT	NOTES
Sulfate	09-24-99	mg/L	300.0	<1.0	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LAB CONTROL SPIKE RESULTS

SAMPLE DESCRIPTION				MATR	TX.		
			==========		*=====		
LAB CONTROL SPIKE				Aqueo	ous		
			2000000000		======	======	=====
ANALYTE	ANALYZED UNITS	METHOD	SPK	SPK RES	% REC	LIMITS	NOTES
Sulfate	09-24-99 mg/L	300.0	10.0	9.90	99		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LABORATORY METHOD BLANK RESULTS

SAMPLE DESCRIPTION			MATRIX		
**************************************					======
METHOD BLANK			Solid/Soi	l/Sludge	
ANALYTE	*********				
WANTE	ANALYZED	UNITS	METHOD	RESULT	NOTES
Solids-Total Residue (TS)	09-28-99	wt %	CLP/CI	<0.10	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

^[1] Sample Preparation on 09-27-99 by JF

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF LAB CONTROL SPIKE RESULTS

SAMPLE DESCRIPTION				MATR	ĽΧ		
LAB CONTROL SPIKE		**************************************		المعاد والمعاددة	: i/Soil/S		=====
ANALYTE	ANALYZED UNITS	METHOD	SPK		-	LIMITS	NOTES
Solids-Total Residue (TS)	09-28-99 wt %	 CLP/CI	90	88.7	99		
		/ CI	J	36.7	23		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

^[1] Sample Preparation on 09-27-99 by JF

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

PROJECT: CTO #68

REPORT OF DUPLICATE SAMPLE RESULTS

SAMPLE DESC	RIPTION					MATRIX	•
					Solid/Soil/Sludge		
ANALYTE	ANALYZED UNITS	METHOD	*PQL	RESULT	DUP #1	RPD	LIMITS NOTES
Solids- Total Residue (TS)	09-28-99 wt %	CLP/CI	0.10	75.	75.5	0.66	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. See cover letter for additional information

10/19/99

^[1] Sample Preparation on 09-27-99 by JF

4B SEMIVOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK;092399

Lab Name:

Katahdin Analytical Services

SDG No.: WP4035

Lab File ID:

X2963

Lab Sample ID: SBLK;092399

Instrument ID:

5970-X

Date Extracted: 9/23/99

GC Column:

RTX-5

ID: 0.25 (mm) Date Analyzed: 09/30/99

Matrix: (soil/water) WATER

Time Analyzed: 9:31

Level: (low/med)

LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID			Date Injected	Time Injected
LCS;092399	LCS;092399	X2964	9/30/99	10:16:00 AM
LCSD;092399	LCSD;092399	X2965	9/30/99	11:00:00 AM
22GLM0401	WP4035-2	X2967	9/30/99	12:29:00 PM
22GLM0601	WP4035-3	X2968	9/30/99	1:14:00 PM
25GLM0101	WP4035-4	X2969	9/30/99	1:58:00 PM
25GLM0501	WP4035-5	X2970	9/30/99	2:43:00 PM
25GLM0501D	WP4035-6	X2971	9/30/99	3:28:00 PM
25GLX0201	WP4035-7	X2972	9/30/99	4:13:00 PM
22GLM0301D	WP4035-9	X2974	9/30/99	5:42:00 PM
22GLM0301	WP4035-1	X2975	9/30/99	6:26:00 PM
22GLM0601	WP4035-3RA	X2976	9/30/99	7:11:00 PM
25GLX0401	WP4035-8	X2982	10/1/99	1:03:00 PM
25GLM0501D	WP4035-6DL	X2986	10/1/99	4:01:00 PM
25GLM0501	WP4035-5DL	X2987	10/1/99	4:46:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;092399

SDG:

WP4035

Report Date:

10/7/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

EPA 8270

Date Analyzed: 9/30/99

Sample Description	Matrix Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;092399	AQ	•	•	9/23/99	LAP	EPA 3510	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<10	ug/L	1.0	10	10		·
2-METHYLNAPHTHALENE	<10	ug/L	1.0	10	10		
ACENAPHTHYLENE	<10	ug/L	1.0	10	10		
ACENAPHTHENE	<10	ug/L	1.0	10	10		
FLUORENE	<10	ug/L	1.0	10	10		
PHENANTHRENE	<10	ug/L	1.0	10	10		
ANTHRACENE	<10	ug/L	1.0	10	10		
FLUORANTHENE	<10	ug/L	1.0	10	10		
PYRENE	<10	ug/L	1.0	10	10		
BENZO[A]ANTHRACENE	<10	ug/L	1.0	10	10		
CHRYSENE	<10	ug/L	1.0	10	10		
BENZO[B]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[K]FLUORANTHENE	<10	ug/L	1.0	10	10		
BENZO[A]PYRENE	<10	ug/L	1.0	10	10		·
INDENO[1,2,3-CD]PYRENE	<10	ug/L	1.0	10	10		
DIBENZ[A,H]ANTHRACENE	<10	ug/L	1.0	10	10		
BENZO[G,H,I]PERYLENE	<10	ug/L	1.0	10	10		
NITROBENZENE-D5	76	%	1.0				
2-FLUOROBIPHENYL	66	%	1.0				
TERPHENYL-D14	73	%	1.0				

Report Notes:

Katahdin Analytical Services LCS/LCSD Report

Sample	File Name	Date Acquired	Time inj	Analyst	Matrix	Method	
LCS;092399	X2964	9/30/99	10:16	KRT	AQ	8270	
LCSD;092399	X2965	9/30/99	11:00	KRT	AQ	8270	

Compound Name	Spk Amt ug/L	LCS Result ug/L	LCSD Result ug/L	LCS Rec (%)	LCSD Rec (%)	Rec. Limits (%)	RPD (%)	RPD Limit (%)
2-METHYLNAPHTHALENE	50	22.6	22.6	*45	*45	70-130	0	30
ACENAPHTHENE	50	29.3	34.9	*59	70	70-130	17	30
ACENAPHTHYLENE	50	27.3	33.5	*55	*67	70-130	20	30
ANTHRACENE	50	29.0	38.8	*58	78	70-130	29	30
BENZO[A]ANTHRACENE	50	28.8	33.4	*58	*67	70-130	14	30
BENZO[A]PYRENE	50	29.0	41.7	*58	83	70-130	*35	1 30
BENZO[B]FLUORANTHENE	50	30.5	45.3	*61	91	70-130	*39	30
BENZO[G,H,I]PERYLENE	50	27.3	38.6	*55	77	70-130	*33	30
BENZO[K]FLUORANTHENE	50	29.5	47.9	*59	96	70-130	*48	30
CHRYSENE	50	33.3	42.8	*67	86	70-130	25	30
DIBENZ[A,H]ANTHRACENE	50	27.1	39.2	*54	78	70-130	*36	30
FLUORANTHENE	50	31.6	44.4	*63	89	70-130	*34	30
FLUORENE	50	25.8	32.3	*52	*65	70-130	22	30
INDENO[1,2,3-CD]PYRENE	50	22.9	24.8	*46	*50	70-130	8.3	30
NAPHTHALENE	50	30.9	33.9	*62	*68	70-130	9.2	30
PHENANTHRENE	50	29.5	40.0	*59	80	70-130	30	30
PYRENE	50	35.9	46.2	72	92	70-130	24	30

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKQ22B

Lab Name:

Katahdin Analytical Services

SDG No.: WP4035

Lab File ID:

Q6709

Lab Sample ID: VBLKQ22B

Date Analyzed: 09/22/99

Time Analyzed: 18:34

GC Column:

RTX-502 ID: 0.53

(mm)

Heated Purge: (Y/N) N

Instrument ID: 5970-Q

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSQ22A	LCSQ22A	Q6707	9/22/99	5:07:00 PM
22GLM0301	WP4035-1	Q6712	9/22/99	8:34:00 PM
22GLM0401	WP4035-2	Q6713	9/22/99	9:12:00 PM
22GLM0601	WP4035-3	Q6714	9/22/99	9:49:00 PM
25GLM0101	WP4035-4	Q6715	9/22/99	10:27:00 PM
25GLX0401	WP4035-8	Q6719	9/23/99	1:02:00 AM
22GLM0301D	WP4035-9	Q6720	9/23/99	1:40:00 AM
25TL00201	WP4035-10	Q6721	9/23/99	2:19:00 AM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ22B

SDG:

WP4035

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260 Date Analyzed: 9/22/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
VBLKQ22B	AQ	-	•	- 9/22/99	JSS	5030	JSS	
Compound	Res	ult Units	DF	Sample PQL	Method PQL			
BENZENE	<5	ug/L	1.0	5	5			
TOLUENE	<5	ug/L	1.0	. 5	5			
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		•	
ETHYLBENZENE	<5	ug/L	1.0	5	5			
NAPHTHALENE	<5	ug/L	1.0	5	5			
MTBE	<5	ug/L	1.0	5	5			
TOTAL XYLENES	<5	ug/L	1.0	5	5			
DIBROMOFLUOROMETHANE	92	%	1.0					
1,2-DICHLOROETHANE-D4	84	%	1.0					
TOLUENE-D8	92	%	1.0					
P-BROMOFLUOROBENZENE	91	%	1.0					

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: Q6707

Sample ID: LCSQ22A

Date Run: 9/22/99

Analyst: JSS

Time Injected: 5:07:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)	
1,2-DIBROMOETHANE	50	43.4	87	60-140	
BENZENE	50	47.4	95	60-140	
ETHYLBENZENE	50	53.3	106	60-140	
МТВЕ	50	46.4	93	60-140	
NAPHTHALENE	50	61.6	123	60-140	
TOLUENE	50	44.2	88	60-140	
TOTAL XYLENES	150	140	93	60-140	

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKQ23A

Lab Name:

Katahdin Analytical Services

SDG No.: WP4035

Lab File ID:

Q6724

Lab Sample ID: VBLKQ23A

Date Analyzed: 09/23/99

Time Analyzed: 10:57

GC Column:

RTX-502 ID: 0.53

(mm)

Heated Purge: (Y/N) N

Instrument ID:

5970-Q

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSQ23A	LCSQ23A	Q6723	9/23/99	10:03:00 AM
25GLX0201	WP4035-7	Q6726	9/23/99	1:41:00 PM
25GLM0501	WP4035-5	Q6731	9/23/99	4:51:00 PM
25GLM0501D	WP4035-6	Q6732	9/23/99	5:28:00 PM

KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

P-BROMOFLUOROBENZENE

97

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ23A

SDG:

WP4035

Report Date:

10/6/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

N/A

SW8260 Date Analyzed: 9/23/99

Sample Description	Matrix Sai	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKQ23A	AQ	•	• .	9/23/99	НМР	5030	НМР
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	. 5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	86	%	1.0	•	. •		
1,2-DICHLOROETHANE-D4	78	%	1.0				
TOLUENE-D8	97	%	1.0				

1.0

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: Q6723

Sample ID: LCSQ23A

Date Run: 9/23/99

Analyst: HMP

Time Injected: 10:03:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	54.6	109	60-140
BENZENE	50	50.7	101	60-140
ETHYLBENZENE	50	56.9	114	60-140
МТВЕ	50	58.6	117	60-140
NAPHTHALENE	50	54.7	109	60-140
TOLUENE	50	51.4	103	60-140
TOTAL XYLENES	150	157	105	60-140

VOLATILE ORGANICS METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLKU24A

Lab Name:

Katahdin Analytical Services

SDG No.: WP4035

Lab File ID:

U1070

Lab Sample ID: VBLKU24A

Date Analyzed: 09/24/99

Time Analyzed: 9:12

GC Column:

RTX-624 ID: 0.18 (mm) Heated Purge: (Y/N) N

Instrument ID: 5973-U

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, LCS'S, MS AND MSD'S:

Client Sample ID	Lab Sample ID	Lab Data File	Date Injected	Time Injected
LCSU24A	LCSU24A	U1069	9/24/99	8:28:00 AM
25GLM0501	WP4035-5DL	U1080	9/24/99	3:29:00 PM
25GLM0501D	WP4035-6DL	U1081	9/24/99	4:08:00 PM

KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKU24A

SDG:

WP4035 10/6/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKU24A	AQ -		•	9/24/99	KMC	5030	KMC
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	i ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	-	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	-	1.0	5	5		
DIBROMOFLUOROMETHANE	102	2 %	1.0	_	•		
1,2-DICHLOROETHANE-D4	104	4 %	1.0				
TOLUENE-D8	101	1 %	1.0				
P-BROMOFLUOROBENZENE	98		1.0				

Report Notes:

Katahdin Analytical Services 8260 LCS Recovery Sheet

Lab File: U1069

Sample ID: LCSU24A

Date Run: 9/24/99

Analyst: KMC

Time Injected: 8:28:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	54.9	110	60-140
BENZENE	50	52.0	104	60-140 60-140 60-140
ETHYLBENZENE	50 50	54.0	108	
МТВЕ		49.7		
NAPHTHALENE	50	55.4	111	60-140
TOLUENE	50	53.6	107	60-140
TOTAL XYLENES	150	159	106	60-140

ENSR Air Toxics Specialty Laboratory 42 Nagog Park Acton, MA 01720

DATE:

October 12, 1999

TO:

Andrea Colby

Katahdin Analytical 340 County Road No. 5

P.O. Box 720

Westbrook, ME 04098

Re:

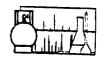
Organic Analyses of Aqueous Samples for Methane by Gas

Chromatography/Flame Ionization Detection (GC/FID)- WP4035

PROJECT #: 8601-008-200

LAB ID #:

990178


ANALYTICAL PROCEDURE:

Five (5) aqueous samples were analyzed for methane under the guidelines of SW-846 Method 3810.

A Hewlett Packard 5890 series II gas chromatograph (GC) equipped with a Hewlett Packard flame ionization detector (FID) was used for the analysis. A 1.0 mL headspace aliquot of each sample was injected into the column for analysis. The operating conditions of the GC/FID are listed in Table 1. A five point calibration was performed for the target analyte, methane.

It should be noted that all samples were received at 10°C.

QUALITY CONTROL:

- 1. A laboratory blank was analyzed daily in the same manner as the samples. Methane was not detected in the blank.
- 2. MS/MSD analyses were performed on a sample from another Katahdin job (WP3906). The recoveries and relative percent differences of methane were within QC limits.
- 3. A laboratory control spike was analyzed daily. The recovery of methane was within the QC acceptance limits.

Date Samples Received by the Laboratory:

9/23/99

Date Analysis Started:

9/24/99

C:\My Documents\Kat 990175 990178 990180\katrpt4.doc

Katahdin P.O. Box 720 Westbrook, ME 04092

CHAIN of CUSTODY

	178			PLEAS	E PRIN	IT IN PE	N	Pa	ge o
Contac		c λ		Phone # ()			F	* *	
City	C. C. C. C.	7 01		State			Zip Cod		odniko _{n,}
Name / No.						Katahd	lin Quote	#	- 10
Ad	Idress								
		: .			Copi	es To:			
_ •				ANALYSIS F	SAND (PRESER	NATIVE	S	E	· · · · · · · · · · · · · · · · · · ·
-	Filt. DYDN	Filt. DYON	Filt. DYDN	Filt.	Filt. DYDN	Filt.	Filt.	Filt. DYDN	Fitt. DYDNO
· · ·	\$								
CLIENT	1								
O NOT INTACT	1								
Matrix No. of Cntrs.	9,55,6								
4Q 3	X	7	1017	K - 1				!	
1	¥		· · · · · ·	- 2					
	X			-23					
	Х			- 4					
11	Х			5	,				
						-			
								·	
			,						
									
	D CLIENT No. of	Address Filt. P ON NOT INTACT Matrix No. of Cntrs. A A A A A A A A A A A A A A A A A A A	Address Filt. Filt. Filt. Filt. OY DNOY DN O CLIENT O NOT INTACT Matrix No. of Cntrs. A Q 3 X	Address Filt. Filt. Filt. Filt. OYDNOYDN OYDN Address A A A A A A A A A A A A A A A A A A	ANALYSI Filt. Fil	Address Copi ANALYSIS AND COPRESER Filt. Filt. Filt. Filt. Filt. Filt. O CLIENT No. of Contract Address Address Analysis and Copreser Analysis and Copr	Address Copies To: ANALYSIS AND CONTAIN PRESERVATIVE Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. ON OY OY ON OY OY ON OY ON OY ON OY ON OY ON OY ON OY ON OY ON OY ON OY ON OY OY ON OY ON OY OY OY OY OY OY OY OY OY OY OY OY OY	Address Copies To: ANALYSIS AND CONTAINER TYP PRESERVATIVES Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. O'ON O'ON O'ON O'ON O'ON O'ON O'ON O'O	Address Copies To: ANALYSIS AND CONTAINER TYPE PRESERVATIVES Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. O NOT INTACT Matrix No. of Contrs. ANALYSIS AND CONTAINER TYPE PRESERVATIVES O CLIENT ANALYSIS AND CONTAINER TYPE PRESERVATIVES O CLIENT ANALYSIS AND CONTAINER TYPE PRESERVATIVES O CLIENT ANALYSIS AND CONTAINER TYPE PRESERVATIVES ANALYSIS ANALYSIS AND CONTAINER TYPE PRESERVATIVES ANALYSIS

SAMPLE LOG-IN & RECEIPT CHECKLIST

	1. Hout			Lab Pool #:	990178
Inspected & Lo	ogged in by: A.	MacDuff	- ;	Date Time: 9	23/9 @10
Samı	ole Matrix	Number of Samples	Analysis Requested	Analyze by (date)	Storage Location
Anue	2005	5	CHY	10/7/99	RI
			·		
	-			:	
· · · · · · · · · · · · · · · · · · ·				:	
	•	· :			:
			,	:	
S) Samples brown S) Samples are	present / not present / not present / on received correctly /	eceipt receipt Temp / incorrectly / no	oblank@10	•	
•		ent on cample	.		
B) COC tapes D) Discrepanci	es / NO discrepand			samples	

Lab Name: ENSR	Contract:	EPA SAMI WP4035-4	PLE NO.
Lab Code:	Case No.:	SAS NO.: SDG NO.:	
Matrix: (soil/water)	water	Lab Sample ID: 990178-4	
Sample wt / vol: 32.5	ml (g/ml)	Lab File ID:KAT_030	 · .
Level: (low/med)	low	Date Received:9/23/99	
% Moisture:NA	·	Date Analyzed:9/24/99	
GC Column: _ Carboxen 1	004 OD: 1/16"	Dilution Factor:1	
Soil Extract Volume:	ΝΑ (μί)	Soil Aliquot Volume: NA	_ (µl)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L	Q
74-82-8 N	/lethane	4400	F

Lab Name: ENSR	Contract:	WP4035-4 D	
Lab Code:	Case No.:	_ SAS NO.: SDG NO.:	
Matrix: (soil/water) wate	r	Lab Sample ID: 990178-4 DIL	
Sample wt / vol: 32.5 ml _	(g/ml)	Lab File ID:KAT_031	
Level: (low/med) low		Date Received:9/23/99	
% Moisture: NA	———	Date Analyzed:9/24/99	
GC Column: _ Carboxen 1004 _	OD: 1/16"	Dilution Factor:10	
Soil Extract Volume:NA	(µI)	Soil Aliquot Volume: NA (µl)	
CAS NO. COMP	POUND	CONCENTRATION UNITS: (µg/L or PPMv) µg/L Q	
74-82-8 Metha	ine	6000	

Lab Name: ENSR	Contract:		WP4035-5	<u>= </u> NO.
	Case No.:			
Matrix: (soil/water)	water	Lab Sample I	D: 990178-5	
Sample wt / vol: 32.5	5 ml (g/ml)	Lab File ID: _	KAT_032	·
Level: (low/med)	low	Date Receive	d:9/23/99	
% Moisture:NA		Date Analyze	d:9/24/99	
GC Column: _ Carboxen 1	004 OD: 1/16"	Dilution Facto	r:1	
Soil Extract Volume:	_ NA (µl)	Soil Aliquot Vo	olume: NA (µI)
CAS NO.	COMPOUND		ATION UNITS: v) µg/L	Q
74 02 0	Mathana	0.50		_

y y Chicoso

Lab Name: ENSR _	Contract:		WP4035-5	
Lab Code:	Case No.:	_ SAS NO.:	SDG NO.:	
Matrix: (soil/water)v	vater	Lab Sample ID	: 990178-5 DIL	
Sample wt / vol: 32.5	ml (g/ml)	Lab File ID:	_KAT_033	
Level: (low/med)	low	Date Received	:9/23/99	
% Moisture: NA		Date Analyzed:	9/24/99	. .
GC Column: _ Carboxen 10	004 OD: 1/16"	Dilution Factor:	5	
Soil Extract Volume:	ΝΑ (μΙ)	Soil Aliquot Vol	ume: NA	_ (µi)
:				
CAS NO. C	OMPOUND	CONCENTRAT (µg/L or PPMv)		Q
74-82-8 M	ethane	4400		D

EPA SAMPLE NO.

Lab Name: ____ ENSR ____ Contract: ____ VBLK01 Lab Code: _____ Case No.: _____ SAS NO.: ____ SDG NO.: Matrix: (soil/water) ____ water ____ Lab Sample ID: MB990178 Sample wt / vol: ____ 32.5 ml ____ (g/ml) Lab File ID: KAT 006 Date Received:___NA ____ Level: (low/med) _____ low ____ % Moisture: _____ NA _____ Date Analyzed:___9/24/99 ____ GC Column: _ Carboxen 1004 __ OD: ___ 1/16" ___ Dilution Factor:____ 1 ____ Soil Aliquot Volume: NA (µI) Soil Extract Volume: ____ NA ___ (µl) **CONCENTRATION UNITS:** (μg/L or PPMv) __ μg/L ___ CAS NO. **COMPOUND** Q 74-82-8 Methane 5.2 U

			EPA SAMPLE N	10.
Lab Name: ENSR	Contract:		LCS01	
Lab Code:	Case No.:	_ SAS NO.:	SDG NO.:	
Matrix: (soil/water)	water	Lab Sample ID:	LCS990178	
Sample wt / vol: 32.5	ml (g/ml)	Lab File ID:	KAT_007	•
Level: (low/med)	low	Date Received:	NA	
% Moisture: NA		Date Analyzed:	9/24/99	
GC Column: _ Carboxen 1	004 OD: 1/16"	Dilution Factor:	1	.·
Soil Extract Volume:	NA (µl)	Soil Aliquot Volu	ıme: NA (μΙ)	
CAS NO.	COMPOUND	CONCENTRAT	=	Q
74-82-8 N	1ethane	210		

			LFA SAMPLE NO.
Lab Name: ENS	R Contract: _		WP3906-28(B) MS
Lab Code:	Case No.:	SAS NO.:	SDG NO.:
Matrix: (soil/water)	water	Lab Sample ID	: 990175-1 MS
Sample wt / vol: 3	2.5 ml (g/ml)	Lab File ID:	KAT_023
Level: (low/med)	low	Date Received	:9/16/99
% Moisture: NA		Date Analyzed:	9/24/99
GC Column: _ Carboxe	n 1004 OD: 1/16"	Dilution Factor:	1
Soil Extract Volume:	NA (μl)	Soil Aliquot Vol	ume: NA (μΙ)
CAS NO.	COMPOUND	CONCENTRAT	
74-82-8	Methane	340	

Lab Name: ENSR	Contract:		WP3906-28(C) MSD
Lab Code:	Case No.:	_ SAS NO.:	SDG NO.:
Matrix: (soil/water) wa	ter	Lab Sample ID:	990175-1 MSD
Sample wt / vol: 32.5 ml	(g/ml)	Lab File ID:i	KAT_024
Level: (low/med)low	v	Date Received:_	9/16/99
% Moisture: NA	<u> </u>	Date Analyzed:_	9/24/99
GC Column: _ Carboxen 1004	4 OD: 1/16"	Dilution Factor:_	1
Soil Extract Volume: N	Δ(μΙ)	Soil Aliquot Volu	me: NA (µI)
CAS NO. COM	MPOUND	CONCENTRATION (µg/L or PPMv)	
74-82-8 Me tl	nane	350	

3 LABORATORY CONTROL SPIKE RECOVERY

Lab Name:	ENSR	Contract:		
Lab Code:	Case NO.:	SAS NO.:	SDG NO.:	
Laboratory Contro	ol Sample No:LCS0	1		

COMPOUND	SPIKE	LCS	LCS	QC
	ADDED	CONCENTRATION	%	LIMITS
	(µg/L)	(µg/L)	REC #	REC.
Methane	205.0	206.7	101%	50 - 150

^{* -} Values outside of QC limits.

3 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

ab Name: ENSR _		-		Contract	:	
ab Code:	Case N	0.:	SAS NO.:		SDG NO.	
latrix Spike - EPA Sample	e NO.:WP39	906-28				
	SPIKE	SAMPLE	MS	3	MS	QC
	ADDED	CONCENTRATION	CONCENT	RATION	. %	LIMITS
COMPOUND	(µg/L)	(μg/L)	(hā		REC #	REC.
Methane	205.0	189	344.8		76%	50-150
				."		
	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC	LIMITS
COMPOUND	(µg/L)	(µg/L)	REC #	RPD #	RPD	REC.
Methane	205.0	345.8	77%	0.68%	50	50-150
Spike recovery: 0 out of 2 outside limits. RPD: 0 out of 1 outside limits.						
Comments:						

METHOD BLANK SUMMARY EPA SAMPLE NO. Lab Name: ____ ENSR ____ Contract: ____ VBLK01 Lab File ID: __KAT_006_____ Lab Sample I MB990175 Instrument ID: ____ HPGC#3____ Date Analyzed:_9/24/99____ Matrix: (soil/water) ____ water Level: (low/med) _____ low ___ THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES; MS AND MSD EPA LAB LAB DATE SAMPLE NO. SAMPLE ID FILE ID **ANALYZED** 01 LCS01 LCS990175 KAT_007 09/24/99 02 WP3906-28(B) MS 990175-1 MS KAT 023 09/24/99 03 WP3906-28(C) MSD 990175-1 MSD KAT_024 09/24/99 04 WP4035-1 990178-1 **KAT 025** 09/24/99 05 WP4035-1 D 990178-1 DIL KAT_026 09/24/99 06 WP4035-2 990178-2 **KAT 028** 09/24/99 07 WP4035-3 990178-3 KAT 029 09/24/99 80 WP4035-4 990178-4 KAT 030 09/24/99 09 WP4035-4 D 990178-4 DIL KAT 031 09/24/99 10 WP4035-5 990178-5 KAT 032 09/24/99 11 WP4035-5 D 990178-5 DIL **KAT 033** 09/24/99 12 13 14 15 16 17 18 19 20 21 22 23 24 25

COMMENTS:

26

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

Sample Receipt

The following samples were received on June 8, 1999 and were logged in under Katahdin Analytical Services work order number WP2792 for a hardcopy due date of July 8, 1999.

KATAHDIN Sample No.	TTNUS Sample Identification	GEL Sample No.
WP2792-1	25SLB090304	
WP2792-2	25SLB100102	
WP2792-3	25SLB110203	
WP2792-4	25SLB130203	9906242-01
WP2792-5	25SLB130203D	9906242-02
WP2792-6	25SLB140304	•
WP2792-7	25SLB160304	
WP2792-8	25SLB170304	
WP2792-9	25SLB120203 GRAW SIZE	
WP2792-10	25SLB120708	
WP2792-11	25TL00501	
WP2792-12	25SLB150304	9906242-03
WP2792-13	25SLB150304D	9906242-04

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

Volatile Organic Analysis

Twelve soil samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on June 8, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this workorder were performed on the 5972-F, 5972-M, and 5972-Z instruments. A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve-hour window. Results are included

in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate was performed on any sample in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

The calibration curves in this workorder had several analytes exceeding the maximum allowable 15% RSD. Since the average %RSDs were 8.3%, 12.3%, 10.9%, and 13.3%, the curves were acceptable.

Initial analyses of samples WP2792-2, -4, -5, -8, and -9 following medium level protocols yielded target analyte concentrations over the upper limit of the calibration curve. Analyses of samples WP2792-5 and -9 also yielded surrogate recovery deviations. Reanalyses occurred at 1:2, 1:10, 1:50, 1:20, and 1:100 dilutions, respectively, successfully. Both sets of data are included in this data package for each sample.

Initial analysis of sample WP2792-6 following low level protocols yielded internal standard area and surrogate recovery deviations. Reanalysis yielded internal standard area recovery deviations, confirming matrix interference. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

Semivolatile Organic Analysis

Nine soil/sediment samples were received by Katahdin Analytical Services laboratory on June 8, 1999 for analysis in accordance with 8270C for the PAH list of analytes.

Extraction of the samples occurred following USEPA method 3550 on June 16, 1999. A laboratory control spike consisting of all PAH analytes spiked into organic free sand, was extracted in the batch.

The initial calibration curve analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the

mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curve analyzed in this SDG, the average %RSD for all analytes was 9.1%, making the curve acceptable.

Initial analyses of samples WP2792-4, -5, and -9 yielded target analyte concentrations over the upper limit of the calibration curve. Analysis of sample WP2792-9 also yielded an internal standard area recovery deviation. Reanalyses occurred at 1:5, 1:100, and 1:5 dilutions, respectively. Both sets of data for each sample are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

Metals Analysis

The samples of Katahdin Work Order WP2792 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Soil-matrix Katahdin Sample Nos. WP2792-(1-5) were originally digested for lead analysis on 07/07/99 (QC Batch PG07ICS0) in accordance with USEPA Method 3050B. Katahdin Sample No. WP2989-1 was prepared with duplicate matrix-spiked aliquots.

ICP analyses of Katahdin Work Order WP2792 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash Trace ICP. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

Wet Chemistry Analysis

For work order WP2792 the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2792 samples have been performed in accordance

with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

Subcontracted Analysis

Analyses for Total Organic Carbon, Total Petroleum Hydrocarbon and Grain size were subcontracted to outside laboratories. All sets of data are included as separate sections to the data package.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Detorah J. Nadeau Authorized Signature 8.12.99

KATAHDIN ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REP	S, INC. PORT			LAB (WORK ORDER) #
Tel. (207) 874-2400 Fax (207) 775-4029				PAGE: OF
		••		COOLER: OF
CLIENT: Tetra Tech		<u> </u>		SDG# DATE / TIME RECEIVED:
PROJECT: CNC Charlesto	<u> </u>	· · · · · · · · · · · · · · · · · · ·		DELIVERED BY: Fed EX RECEIVED BY: Sau LIMS ENTRY BY: BE A LIMS REVIEW BY / PM: KY
1. CUSTODY SEALS PRESENT / INTACT?	YES	NO 🗆	EXCEPTIONS	COMMENTS RESOLUTION
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	<u></u>			
4. CHAIN OF CUSTODY MATCHES SAMPLES?		्रा		(1) Client sord to add
5. TEMPERATURE BLANKS PRESENT?				25568 120708 to COC
6. SAMPLES RECEIVED AT 4°C + 27 ICE DE PACKS PRESENT (Y) or N?		Ø		ten blank under bagotice. Ascontacted Baga House
7. VOLATILES FREE OF HEADSPACE?	a			(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT) For WIR LA
8. TRIP BLANK PRESENT IN THIS COOLER	Ø			
9. PROPER SAMPLE CONTAINERS AND VOLUME?				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	ব্			
11. SAMPLES PROPERLY PRESERVED(1)?		Q.	Durkay	
12. CORRECTIVE ACTION REPORT FILED?		Ø	N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL	CLP HAZ	WRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG-INNOTES(1): Sample 10 2556.B12	ozoz	only hachain (no time on co	ners, there is an extra container 10 25 SLB120708 for grain, stainer but date matches); South 12 25 SLB120708

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

Katahdin 340 County Road No. 5 P.O. Box 720 Westbrook, ME 04098

CHAIN of CUSTODY

	207) 874-2400 (207) 775-4029						PLEASE	PRINT	IN PEN	Р	age <u>(</u>	of _
Client Tetra tech	Vus		Contac		س بحو		Phone # (\$43)	814-	9080	Fax #		
Address NHZI Au	·H	City	1. C	harle	ston	5	State 5	C	Zi	Code と	740	to,
Purchase Order #		j. Name / N						К	atahdin C			
Bill (if different than above)			, Ac	idress					•			
Sampler (Print / Sign)	Franklin / R	12	hl					Copies	To:			
LAB USE ONLY WORK ORDE		- •					ANALYSIS I	SAND CO RESERVA	NTAINER TIVES	етүре		
KATAHDIN PF	ROJECT MANAGER	•		Filt:	Filt.	Filt. □Y□N	Filt.	Filt. DY 🗆 N 🗆	Filt. YONO	Filt. Filt.	Filt.	Filt OY C
REMARKS:				Naphth	2 }		20				3	
SHIPPING INFO: SA FED EX AIRBILL NO: 80960965	UPS	O CLIE	VT	3	le Dis		513				Recollings	
TEMP°C TEMP BLAN		D NOT	NTACT	G 2	BTEX	3 4	4 10	00			15 E	
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	, ,	1370	13	32%	7			FID	
25518494344	6/7/11/0858	Soil	6	Х	*	X					106	
2556 BI 6 0162	4499/0915	Soil	6	X	×	X					>2000	
Z 5 51 B11 \$Z\$3	47/94/0935	Soil	6	X	×	X					1610	
2556B126263	417/99/1015	Soil	8	χ	7	×	X				>5,000	
25 SL B13 Ø2 Ø3	617199/1040	Soil	6	X	X	X					250	
25 SLB130243D	61744/1040	Soil	6	Ý	X	X					820	750
25 56 13 14 \$3 \$4	47/19/1055		6	K	γ	X					820	
25. SLB15 \$344	47/99/1115		6	X	X	X		X			150	
25523164344		50:(6	Ý	¥	Y					250	
25 SLB 174344	6/7/99/1355	Soil	9	¥	X	X		-			75200	
25 TL 0\$5\$1	6/7/49/-	Water	Z		て			-				
255LB120708	0/7/99/						χ					
	/											
	/											
	/											
	/											
COMMENTS												
	ate / Time Rece	ived By; (S	ignature) F	Relinquish	ed By: (S	Signature)	Date	/ Time	Received	By: (Signa	ature)
Polyguished Dir (5)	7/99 18ac /-	ed t	X	_		-		68-9	9 1015	Shalle	MUR.	w
Revirquished By: (Signature) Di	ate / Time Rece	ived By: (S	iġnature) F	Relinquish	ed By: (S	Signature)	Date	/ Time	Received	l b y: (Signa	-
PRMSOURCE INC. 12 (207) 782-3311										$\underline{\underline{a}}$	XXX	7

CONFIRMATION Page 1 ORDER NO WP-2792 Project Manager: Andrea J. Colby ORDER DATE: 06/08/99 REPORT TO: Paul Calligan PHONE: 850/385-9899 Tetra Tech NUS FAX: 850/385-9860 1401 Oven Park Dr., Suite 102 DUE: 08 JUL Tallahassee, FL 32308 FAC. ID: CNC CHARLESTON INVOICE: ACCOUNTS PAYABLE PHONE: 412/921-7090 TETRA TECH NUS, INC. PO: N7912-P99264 661 ANDERSEN DRIVE, FOSTER PLAZA VII PITTSBURGH, PA 15220-2745 PROJECT: CTO #68 SAMPLED BY: ROGER FRANKLIN DELIVERED BY: FEDEX DISPOSE: AFTER 07 AUG ITEM LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX WP2792-1 25SLB090304 07 JUN 0858 08 JUN SL WP2792-2 25SLB100102 07 JUN 0915 WP2792-3 25SLB110203 07 JUN 0935 WP2792-6 25SLB140304 07 JUN 1055 WP2792-7 25SLB160304 07 JUN 1330 WP2792-8 25SLB170304 07 JUN 1355 **DETERMINATION** METHOD PRICE AMOUNT Polynuclear Aromatic Hydrocarbons EPA 8270 6 135.00 810.00 Volatile Organics by 8260B SW8260 6 85.00 510.00 Solids-Total Residue (TS) CLP/CIP SO 6 0.00 0.00 Lead, Total 6010 6 20.00 120.00 TOTALS 6 240.00 1440.00 LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX 2 WP2792-9 25SLB120203 07 JUN 1015 08 JUN SL **DETERMINATION** METHOD OTY PRICE AMOUNT Polynuclear Aromatic Hydrocarbons EPA 8270 1 135.00 135.00 Volatile Organics by 8260B SW8260 1 85.00 85.00 Solids-Total Residue (TS) CLP/CIP SO 1 0.00 0.00 Lead, Total 6010 1 20.00 20.00 Wet Lab Subcontract 1 110.00 110.00 TOTALS 350.00 350.00

LABORATORY ORDER CONTINUED ON PAGE 2

SAMPLED DATE/TIME RECEIVED

OTY

07 JUN

METHOD

LOG NUMBER SAMPLE DESCRIPTION

WP2792-10 25SLB120708

Wet Lab Subcontract

DETERMINATION

000008

MATRIX

AMOUNT

110.00

SL

NUL 80

PRICE

110.00

ORDER NO WP-2792

Project Manager: Andrea J. Colby

ORDER DATE: 06/08/99

REPORT TO: Paul Calligan

Tetra Tech NUS

PHONE: 850/385-9899

1401 Oven Park Dr., Suite 102

FAX: 850/385- 0

DUE: 08 JUL

Tallahassee, FL 32308

FAC.ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

LOG NUMBER SAMPLE DESCRIPTION

PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PROJECT: CTO #68

PITTSBURGH, PA 15220-2745

SAMPLED BY: ROGER FRANKLIN DELIVERED BY: FEDEX DISPOSE: AFTER 07 AUG

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED MATRIX 4 WP2792-11 25TL00501 07 JUN 08 JUN SL

DETERMINATION METHOD PRICE TRUOMA Volatile Organics by 8260B SW8260 85.00 85.00

SAMPLED DATE/TIME RECEIVED 5 WP2792-12 25SLB150304 07 JUN 1115 70 AUTU 80 DETERMINATION METHOD OTY PRICE AMOUNT EPA 8270 1 135.00 CLP/CIP SO 1 0.00 Polynuclear Aromatic Hydrocarbons 135.00 Solids-Total Residue (TS) Volatile Organics by 8260B 0.00 SW8260 1 85.00 6010 1 20.00 ASTM D2974 1 30.00 1 60.00 85. Lead, Total 20. Total Combustible Organics 30.00 Wet Lab Subcontract 60.00 TOTALS 1 330.00 330.00

LOG NUMBER SAMPLE DESCRIPTION SAMPLED DATE/TIME RECEIVED 6 WP2792-4 25SLB130203 07 JUN 1040 08 JUN WP2792-5 25SLB130203D 07 JUN 1040

DETERMINATION	METHOD	OTY	PRICE	AMOUNT
Polynuclear Aromatic Hydrocarbons Volatile Organics by 8260B Solids-Total Residue (TS) Lead, Total Wet Lab Subcontract	EPA 8270 SW8260 CLP/CIP SO 6010	2 2	135.00 85.00 0.00 20.00 75.00	270.00 170.00 0.00 40.00 150.00
TOTALS		2	315.00	630.00

LABORATORY ORDER CONTINUED ON PAGE 3

1000009 1111 4/14/90

ORDER NO WP-2792

Project Manager: Andrea J. Colby

ORDER DATE: 06/08/99

REPORT TO: Paul Calligan

PHONE: 850/385-9899

Tetra Tech NUS

FAX: 850/385-9860

1401 Oven Park Dr., Suite 102

DUE: 08 JUL

Tallahassee, FL 32308

FAC. ID: CNC CHARLESTON

INVOICE:

ACCOUNTS PAYABLE

PHONE: 412/921-7090

TETRA TECH NUS, INC.

PO: N7912-P99264

661 ANDERSEN DRIVE, FOSTER PLAZA VII

PITTSBURGH, PA 15220-2745

PROJECT: CTO #68

SAMPLED BY: ROGER FRANKLIN

DELIVERED BY: FEDEX

DISPOSE: AFTER 07 AUG

7 WP2792-13

LOG NUMBER SAMPLE DESCRIPTION

25SLB150304D

SAMPLED DATE/TIME RECEIVED MATRIX

07 JUN 1115 07 JUN SL

DETERMINATION

Wet Lab Subcontract

METHOD

PRICE 60.00 AMOUNT

ORDER NOTE:

QC-IV NFESC-D

DD (KAS007QC-DB3)

CNC CHARLESTON

REPORT COPY: MS. LEE LECK

TETRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.

PITTSBURGH, PA 15220

INVOICE: With Report

TOTAL ORDER AMOUNT

\$3,005.00

This is NOT an Invoice

C/BKR/WEST.AJC(dw)

06-14Please contact KATAHDIN ANALYTICAL SERVICES promptly if you have any questi

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
DL	'DL' flag denotes inability to calculate surrogate recovery due to sample dilution.
E , .	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J .	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

KATAHDIN ANALYTICAL SERVICES Summary of Report Notes

Report Note	Note Text
#	# flag denotes surrogate compound recovery is out of criteria.
E	'E' flag indicates an estimated value. The analyte was detected in the sample at a concentration greater than the standard calibration range.
J	'J' flag denotes an estimated value less than the Laboratory's Practical Quantitation Level.
0-1	Sample dilution required due to matrix interference, sample viscosity or other matrix-related problem; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.
0-13	Internal standard area(s) are out of criteria. Reanalysis confirmedmatrix interference.
0-2	Sample dilution required for quantitation of one or more target analytes; therefore, standard laboratory Practical Quantitation Level (PQL) could not be achieved.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-1

SDG:

WP2792

Report Date:

8/5/99 N7912-P99264

PO No.:

CTO #68

Project:

% Solids:

81

Method:

EPA 8270

Date Analyzed: 7/23/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB090304	SL	6/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<40	00 ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<40	00 ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<40	0 ug/Kg	1.2	400	330		
ACENAPHTHENE	<40	0 ug/Kg	1.2	400	330		
FLUORENE	<40	0 ug/Kg	1.2	400	330	-	
PHENANTHRENE	<40	0 ug/Kg	1.2	400	330		
ANTHRACENE	<40	0 ug/Kg	1.2	400	330		
LUORANTHENE	<40	0 ug/Kg	1.2	400	330		
PYRENE	<40	0 ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	<40	0 ug/Kg	1.2	400	330		
CHRYSENE	<40	0 ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	0 ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	0 ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
NDENO[1,2,3-CD]PYRENE	<400	_	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
ENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
IITROBENZENE-D5	42	%	1.2				
-FLUOROBIPHENYL	48	%	1.2				
ERPHENYL-D14	8 6	%	1.2			_	

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-1

SDG:

WP2792 8/2/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

81

Date Analyzed:

SW8260 6/16/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB090304	SL <i>6/7/9</i> 9		6/8/99	6/16/99	KRT	5030	KRT	
Compound	Resul	t Units	DF	Sample PQL .	Method PQL			
BENZENE	52	ug/Kg	1.2	6	5		·	
TOLUENE	. 15	ug/Kg	1.2	6	5	•		
1,2-DIBROMOETHANE	<6	ug/Kg	1.2	6	5			
ETHYLBENZENE	<6	ug/Kg	1.2	6	5			
NAPHTHALENE	J4	ug/Kg	1.2	6	5			
MTBE	<6	ug/Kg	1.2	6	5			
OTAL XYLENES	<6	ug/Kg	1.2	6	. 5			
DIBROMOFLUOROMETHANE	88	%	1.2	-	. •			
,2-DICHLOROETHANE-D4	92	%	1.2					
TOLUENE-D8	86	%	1.2					
P-BROMOFLUOROBENZENE	72	96	12					

Report Notes:

l

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB090304

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 80.8

Lab Sample ID: WP2792-001

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration (C	Q	M	DF	
7439-92-1	LEAD	10.5			P	1	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-1

Report Date: 08/11/99

: N7912-P99264

Project : CTO #68

PO No.

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 10

SAMPLE DESCRIPTION		MATRIX		SAMPLI	ED BY	SAMPLED D	ATE	RECEIVED
25SLB090304		Solid		ROGER	FRANKLIN	06/07/9	9	06/08/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	81.	wt &	1.0	0.10	CLP/CIP SO	OW 06/14/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7

CC: MS. LEE LECK TETRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-2

SDG:

WP2792 8/5/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

68

Method:

EPA 8270

Date Analyzed: 7/23/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB100102	SL	6/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	22	00 ug/Kg	1.5	460	330		
2-METHYLNAPHTHALENE	16	00 ug/Kg	1.5	460	330		
ACENAPHTHYLENE	<4	60 ug/Kg	1.5	460	330		
ACENAPHTHENE	<4	60 ug/Kg	1.5	460	330		
FLUORENE	<4	60 ug/Kg	1.5	460	330		
PHENANTHRENE	<4	60 ug/Kg	1.5	460	330		
ANTHRACENE	<4	60 ug/Kg	1.5	460	330		
FLUORANTHENE	<4	60 ug/Kg	1.5	460	330		
PYRENE	<4	60 ug/Kg	1.5	460	330		
BENZO[A]ANTHRACENE	<40	60 ug/Kg	1.5	460	330		
CHRYSENE	<40	60 ug/Kg	1.5	460	330		
BENZO[B]FLUORANTHENE	<40	60 ug/Kg	1.5	460	330		
BENZO[K]FLUORANTHENE	<40	60 ug/Kg	1.5	460	330		
BENZO[A]PYRENE	<40	50 ug/Kg	1.5	460	330		
INDENO[1,2,3-CD]PYRENE	<46	60 ug/Kg	1.5	460	330		
DIBENZ[A,H]ANTHRACENE	<46	0 ug/Kg	1.5	460	330		
BENZO[G,H,I]PERYLENE	<46	60 ug/Kg	1.5	460	330		
NITROBENZENE-D5	49		1.5				
2-FLUOROBIPHENYL	57	7 %	1.5				
TERPHENYL-D14	75	5 %	1.5				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-2

SDG:

WP2792

Report Date: PO No.:

8/2/99 N7912-P99264

Project:

CTO #68

% Solids:

68

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB100102	SL	SL 6/7/99		6/11/99	JSS	5030	JSS	
Compound	Resul	t Units	DF	Sample PQL .	Method PQL			
BENZENE	6100	ug/Kgdrywt	160	800	5			
TOLUENE	<800	ug/Kgdrywt	160	800	5			
1,2-DIBROMOETHANE	<800	ug/Kgdrywt	160	800	5			
ETHYLBENZENE	E39000		160	800	5			
NAPHTHALENE	21000		160	800	5			
MTBE	<800	ug/Kgdrywt	160	800	5			
TOTAL XYLENES	1800	ug/Kgdrywt	160	800	5			
DIBROMOFLUOROMETHANE	92	%	160	000	3			
1,2-DICHLOROETHANE-D4	104	%	160					
TOLUENE-D8	108	%	160					
P-BROMOFLUOROBENZENE	120	%	160					

Report Notes:

Ε

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-2DL

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

68

Method:

SW8260

Date Analyzed:

6/14/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB100102	SL 6/7/99		6/8/99	6/14/99	DJP	5030	DJP	
Compound	Resu	ult Units	DF	Sample PQL .	Method PQL			
BENZENE	910	0 ug/Kødrywt	326	1600	5			
TOLUENE	<160			1600	5			
1,2-DIBROMOETHANE	<160			1600	5			
ETHYLBENZENE	6300			1600	5			
NAPHTHALENE	3000		320	1600	5			
MTBE	<160		320	1600	5			
TOTAL XYLENES	3000		320	1600	5			
DIBROMOFLUOROMETHANE	95	%	320		•			
1,2-DICHLOROETHANE-D4	96	%	320					
TOLUENE-D8	106	%	320					
P-BROMOFLUOROBENZENE	109	%	320		,			

Report Notes:

Ì

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB100102

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 68.5

Lab Sample ID: WP2792-002

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF		-
7439-92-1	LEAD	34.7			P	1	,	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-2

Report Date: 08/11/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 2 of 10

SAMPLE DESCRIPTION		MATRIX			SAMPLED BY		SAMPLED DATE RECEIVED		
25SLB100102		Solid		ROGER	FRANKLIN	06/07/9	99	06/08/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	69.	wt &	1.0	0.10	CLP/CIP	SOW 06/14/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7

CC: MS. LEE LECK TETRA TECH NUS FOSTER PALZA 7

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-3

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

87

Method:

EPA 8270

Date Analyzed: 7/23/99

Sample Description	. Matrix	Sampled Da	te Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB110203	SL 6/7/99		6/8/99	6/16/99	РММ	EPA 3550	KRT	
Compound	Re	sult Un	its DF	Sample PQL	Method PQL			
NAPHTHALENE	J	250 ug/K	1.1	360	330			
2-METHYLNAPHTHALENE	· <	360 ug/K	g 1.1	360	330	•		
ACENAPHTHYLENE	<	360 ug/K(1.1	360	330			
ACENAPHTHENE	<	360 ug/K(1.1	360	330			
FLUORENE	<	160 ug/Ka	1.1	360	330			
PHENANTHRENE	<	160 ug/Kg	1.1	360	330			
ANTHRACENE	<	160 ug/Kg	1.1	360	330			
FLUORANTHENE	<3	160 ug/Ka	1.1	360	330			
PYRENE	<3	60 ug/Ka	1.1	360	330			
BENZO[A]ANTHRACENE	<3	60 ug/Kg	1.1	360	330			
CHRYSENE	<3	60 ug/Kg	1.1	360	330			
BENZO[B]FLUORANTHENE	<3	60 ug/Kg	1.1	360	330			
BENZO[K]FLUORANTHENE	- <3	60 ug/Kg	1.1	360	330			
BENZO[A]PYRENE	<3	60 ug/Kg	1.1	360	330			
NDENO[1,2,3-CD]PYRENE	<3	60 ug/Kg	1.1	360	330			
DIBENZ(A,H)ANTHRACENE	<3	60 ug/Kg	1.1	360	330			
ENZO[G,H,I]PERYLENE	<3	60 ug/Kg	1.1	360	330			
IITROBENZENE-D5	5	3 %	1.1					
-FLUOROBIPHENYL	6	> %	1.1					
ERPHENYL-D14	8	۱ %	1.1					

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-3

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

87

Method:

SW8260

Date Analyzed:

6/11/99

,									
Sample Description	Matrix	San	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB110203	SL		6/7/99	6/8/99	6/11/99	DJP	5030	DJP	
Compound	Re	esult	Units	DF	Sample PQL .	Method PQL			
BENZENE		J6	ug/Kg	1.1	6	5			
TOLUENE		<6	ug/Kg	1.1	6	5			
1,2-DIBROMOETHANE		<6	ug/Kg	1.1	6	5			
ETHYLBENZENE		14	ug/Kg	1.1	6	5			
NAPHTHALENE	(56	ug/Kg	1.1	6	5			
MTBE		<6	ug/Kg	1.1	6	5			
TOTAL XYLENES	1	19	ug/Kg	1.1	6	5 5			
DIBROMOFLUOROMETHANE	8	32	-g. .g	1.1	O	.			
1,2-DICHLOROETHANE-D4		22	%	1.1					
TOLUENE-D8	_	94	%	1.1					
P-BROMOFLUOROBENZENE		38	· %	1.1					APON

Report Notes:

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB110203

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 87.4

Lab Sample ID: WP2792-003

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF
7439-92-1	LEAD	125			P	1

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-3

Report Date: 08/11/99

Project : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 10

SAMPLE DESCRIPTION		MATRIX			SAMPLED BY			SAMPLED DATE RECEIVED			
25SLB110203		Solid		ROGER	FRANKLII	1.	06/07/9	9	06/08/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD		ANALYZED	BY	NOTES		
Solids-Total Residue (TS)	87.	wt %	1.0	0.10	CLP/CIP	SOW	06/14/99	JF	1		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7 CC: MS. LEE LECK TEIRA TECH NUS FOSTER PALZA 7

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

BENZO[B]FLUORANTHENE

BENZO[K]FLUORANTHENE

INDENO[1,2,3-CD]PYRENE

DIBENZ[A,H]ANTHRACENE

BENZO[G,H,I]PERYLENE

NITROBENZENE-D5

2-FLUOROBIPHENYL

TERPHENYL-D14

BENZO[A]PYRENE

<400

<400

<400

<400

<400

<400

47

71

75

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

%

%

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-4

SDG:

WP2792

Report Date:

8/5/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

Date Analyzed:

85

Method:

EPA 8270 7/23/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203	SL 6/7/99		6/8/99	6/16/99	PMM	EPA 3550	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	E1400	0 ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	E9600	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	<400	ug/Kg	1.2	400	330		
FLUORENE	<400	ug/Kg	1.2	400	330		
PHENANTHRENE	<400	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/Kg	1.2	400	330		
PYRENE	J280	ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

1.2

400

400

400

400

400

400

330

330

330

330

330

330

Report Notes:

J, E

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-4DL

SDG:

WP2792

Report Date:

8/5/99 N7912-P99264

PO No.:

CTO #68

Project:

% Solids:

85

Method:

EPA 8270

Date Analyzed: 7/26/99

Sample Description	Matrix Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203	SL	6/7 <i>1</i> 99	6/8/99	6/16/99	PMM	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	15000	ug/Kg	5.9	1900	330		
2-METHYLNAPHTHALENE	10000	ug/Kg	5.9	1900	330		
ACENAPHTHYLENE	<1900	ug/Kg	5.9	1900	330		
ACENAPHTHENE	<1900	ug/Kg	5.9	1900	330		
FLUORENE	<1900	ug/Kg	5.9	1900	330		
PHENANTHRENE	<1900	ug/Kg	5.9	1900	330		
ANTHRACENE	<1900	ug/Kg	5.9	1900	330		
FLUORANTHENE	<1900	ug/Kg	5.9	1900	330		
PYRENE	<1900	ug/Kg	5.9	1900	330		
BENZO[A]ANTHRACENE	<1900	ug/Kg	5.9	1900	330		
CHRYSENE	<1900	ug/Kg	5.9	1900	330		
BENZO[B]FLUORANTHENE	<1900	ug/Kg	5.9	1900	330		
BENZO[K]FLUORANTHENE	<1900	ug/Kg	5.9	1900	330		
BENZO[A]PYRENE	<1900	ug/Kg	5.9	1900	330		
INDENO[1,2,3-CD]PYRENE	<1900	ug/Kg	5.9	1900	330		
DIBENZ[A,H]ANTHRACENE	<1900	ug/Kg	5.9	1900	330		
BENZO[G,H,I]PERYLENE	<1900	ug/Kg	5.9	1900	330		
NITROBENZENE-D5	37	%	5.9	•			
2-FLUOROBIPHENYL	63	%	5.9				
TERPHENYL-D14	60	%	5.9				

Report Notes:

0-2

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID:

MTBE

TOTAL XYLENES

TOLUENE-D8

DIBROMOFLUOROMETHANE

P-BROMOFLUOROBENZENE

1,2-DICHLOROETHANE-D4

CNC CHARLESTON

Lab Number:

WP2792-4

SDG:

WP2792

Report Date:

8/2/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

85

Method: Date Analyzed:

5

5

SW8260 6/9/99

Sample Description	· Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203	SL	6/7/99	6/8/99	6/9/99	НМР	5035	НМР
Compound	Resul	t Units	DF	Sample PQL .	Method PQL		
BENZENE	5000	ug/Kgdrywt	126	600	5		
TOLUENE	8400	ug/Kgdrywt	120	600	5		
1,2-DIBROMOETHANE	<600		120	600	. 5		
ETHYLBENZENE	E8400		120	600	5		
NAPHTHALENE	E43000		120	600	5		

120

120

120

120

120

120

600

600

<600

140000

88

106

89

98

ug/Kgdrywt

ug/Kgdrywt

%

%

%

%

Report Notes:

Ε

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-4DL

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

85

Method:

SW8260

Date Analyzed: 6/10/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203	SL 6/7/99		6/8/99	6/10/99	DJP	5030	DJP
Compound	Result	Units	DF	Sample PQL .	Method PQL		
BENZENE	J5000	ug/Kgdrywt	1200	6000	5		
TOLUENE	, 7600	ug/Kgdrywt	1200	6000	5		
1,2-DIBROMOETHANE	<6000	ug/Kgdrywt	1200	6000	5		
ETHYLBENZENE	73000	ug/Kgdrywt	1200	6000	5		
NAPHTHALENE	70000	ug/Kgdrywt	1200	6000	5		
MTBE	<6000	ug/Kgdrywt	1200	6000	5		
TOTAL XYLENES	160000	ug/Kgdrywt	1200	6000	5		
DIBROMOFLUOROMETHANE	92	%	1200		-		
1,2-DICHLOROETHANE-D4	87	%	1200				
TOLUENE-D8	103	%	1200				
P-BROMOFLUOROBENZENE	104	%	1200				

Report Notes:

J, O-1, O-2

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB130203

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 85.4

Lab Sample ID: WP2792-004

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF
7439-92-1	LEAD	6.2			P	1

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-4

Report Date: 08/11/99

PO No. : N

: N7912-P99264

Project

: CIO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 9 of 10

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED D	ATE	RECEIVED
25SLB130203		Solid		ROGER	FRANKLIN	06/07/9	9	06/08/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	85.	wt %	1.0	0.10	CLP/CIP	SOW 06/14/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm

PF11TSS7

CC: MS. LEE LECK
TETRA TECH NUS

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-5

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

81

% Solids:

Method:

EPA 8270 99

Date	Analyzed:	7/23/9

Sample Description	Matrix Sar	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203D	SL	6/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	E86000	ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	E62000	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	420	ug/Kg	1.2	400	330		
ACENAPHTHENE	560	ug/Kg	1.2	400	330		
FLUORENE	420	ug/Kg	1.2	400	330		
PHENANTHRENE	1100	ug/Kg	1.2	400	330		
ANTHRACENE	J330	ug/Kg	1.2	400	330		•
FLUORANTHENE	450	ug/Kg	1.2	400	330		
PYRENE	750	ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	J240	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	53	%	1.2	-100	330		
2-FLUOROBIPHENYL	77	%	1.2				
TERPHENYL-D14	84	%	1.2			-	

Report Notes:

J, E

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-5DL

SDG:

WP2792

Report Date: PO No.:

8/5/99 N7912-P99264

CTO #68

Project:

% Solids:

81

Method:

EPA 8270

Date Analyzed:

7/26/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203D	SL	6/7/99	6/8/99	6/16/99	PMM	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	88000	ug/Kg	120	40000	330		
2-METHYLNAPHTHALENE	65000	ug/Kg	120	40000	330		
ACENAPHTHYLENE	<40000	ug/Kg	120	40000	330		
ACENAPHTHENE	<40000	ug/Kg	120	40000	330		
FLUORENE	<40000	ug/Kg	120	40000	330		
PHENANTHRENE	<40000	ug/Kg	120	40000	330		
ANTHRACENE	<40000	ug/Kg	120	40000	330		
FLUORANTHENE	<40000	ug/Kg	120	40000	330		
PYRENE	<40000	ug/Kg	120	40000	330		
BENZO[A]ANTHRACENE	<40000	ug/Kg	120	40000	330		
CHRYSENE	<40000	ug/Kg	120	40000	330		
BENZO[B]FLUORANTHENE	<40000	ug/Kg	120	40000	330		
BENZO[K]FLUORANTHENE	<40000	ug/Kg	120	40000	330		
BENZO[A]PYRENE	<40000	ug/Kg	120	40000	330		
INDENO[1,2,3-CD]PYRENE	<40000	ug/Kg	120	40000	330		•
DIBENZ[A,H]ANTHRACENE	<40000	ug/Kg	120	40000	330		
BENZO[G,H,I]PERYLENE	<40000	ug/Kg	120	40000	330		
NITROBENZENE-D5	DL	%	120				
2-FLUOROBIPHENYL	DL	%	120				
TERPHENYL-D14	DL	%	120				

Report Notes:

O-2, DL

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-5

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

81

SW8260 Date Analyzed: 6/9/99

Sample Description	Matrix San	Matrix Sampled Date		Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB130203D	SL <i>6/7/</i> 99		6/8/99	6/9/99	HMP	5035		
Compound	Result	Units	DF	Sample PQL	Method PQL			
BENZENE	10000	ug/Kgdrywt	116	550	5			
TOLUENE	18000	ug/Kgdrywt	110	550	5	·		
,2-DIBROMOETHANE	<550	ug/Kgdrywt	110	550	5			
THYLBENZENE	E150000	ug/Kødrywt	110	550	5			
NAPHTHALENE	E74000	ug/Kgdrywt	110	550	5			
ITBE	<550	ug/Kgdrywt	110	550	5			
OTAL XYLENES	220000	ug/Kgdrywt	110	550	5			
DIBROMOFLUOROMETHANE	99	%	110		ū			
,2-DICHLOROETHANE-D4	#150	%	110			•		
OLUENE-D8	88	%	110					
P-BROMOFLUOROBENZENE	106	%	110					

Report Notes:

E,#

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-5DL

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

81

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix Sa	impled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB130203D	SL 6/7/99		6/8/99	6/11/99	DJP	5030	DJP
Compound	Result	Units	DF	Sample PQL .	Method PQL		
BENZENE	<28000	ug/Kgdrywt	560fb	28000	5		
TOLUENE	. J15000		5600	28000	5		
1,2-DIBROMOETHANE	<28000		5600	28000	5		
ETHYLBENZENE	130000		5600	28000	5		
NAPHTHALENE	90000	ug/Kgdrywt	5600	28000	5		
MTBE	<28000		5600	28000	5		
TOTAL XYLENES	300000	ug/Kgdrywt	5600	28000	5		
DIBROMOFLUOROMETHANE	100	%	5600		Ū		
,2-DICHLOROETHANE-D4	90	%	5600				
TOLUENE-D8	100	%	5600				
P-BROMOFLUOROBENZENE	100	%	5600				

Report Notes:

J, O-2

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB130203D

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 80.6

Lab Sample ID: WP2792-005

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF	
7439-92-1	LEAD	10.4		,	P	1	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-5

Report Date: 08/11/99

PO No.

: N7912-P99264

Project :

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 10 of 10

SAMPLE DESCRIPTION		MATRIX			ED BY	SAMPLED I	SAMPLED DATE RECEIVED			
25SLB130203D		Solid		ROGER	FRANKLII	N 06/07/9	9	06/08/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES		
Solids-Total Residue (TS)	81.	wt &	1.0	0.10	CLP/CIP	SOW 06/14/99	JF	1		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm

PF11TSS7

CC: MS. LEE LECK TETRA TECH NUS

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-6

SDG:

WP2792

Report Date: PO No.:

8/5/99 N7912-P99264

Project:

CTO #68

% Solids: Method:

EPA 8270

Date Analyzed:

7/23/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB140304	SL	6/7/99	6/8/99	6/16/99	PMM	EPA 3550	KRT
Compound	Re	suit Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<4	100 ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<4	00 ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<4	00 ug/Kg	1.2	400	330		
ACENAPHTHENE	<4	00 ug/Kg	1.2	400	330		
FLUORENE	<4	00 ug/Kg	1.2	400	330		
PHENANTHRENE	<4	00 ug/Kg	1.2	400	330		
ANTHRACENE	<4	00 ug/Kg	1.2	400	330		
FLUORANTHENE	<4	00 ug/Kg	1.2	400	330		
PYRENE	<4		1.2	400	330		
BENZO[A]ANTHRACENE	<4(1.2	400	330		
CHRYSENE	<40	00 ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<40		1.2	400	330		
BENZO[K]FLUORANTHENE	<40		1.2	400	330		
BENZO[A]PYRENE	<40	00 ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<40		1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<40		1.2	400	330		
BENZO[G,H,I]PERYLENE	<40		1.2	400	330		•
NITROBENZENE-D5	57		1.2	-	330		
2-FLUOROBIPHENYL	63	· -	1.2				
TERPHENYL-D14	91		1.2			-	

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-6

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

84

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix S	Matrix Sampled Date		Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB140304	SL 6/7/99		6/8/99	6/11 <i>/</i> 99	DJP	5030	DJP
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/Kg	0.96	5	5		
TOLUENE	. 12	ug/Kg	0.98	5	5		
1,2-DIBROMOETHANE	<5	ug/Kg	0.98	5	5		
ETHYLBENZENE	13	ug/Kg	0.98	5	5		
NAPHTHALENE	60	ug/Kg	0.98	5	5		
MTBE	< 5	ug/Kg	0.98	5	5		
TOTAL XYLENES	12	ug/Kg	0.98	5	5		
DIBROMOFLUOROMETHANE	119	%	0.98				
1,2-DICHLOROETHANE-D4	#182	%	0.98				
TOLUENE-D8	96	%	0.98				
P-BROMOFLUOROBENZENE	100	%	0.98				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2972-6RE

SDG:

WP2792

Report Date:

8/2/99 N7912-P99264

PO No.:

CTO #68

Project:

% Solids:

Method:

SW8260

Date Analyzed: 6/11/99

Sample Description	Matrix	Matrix Sampled Date		Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB140304	SL 6/7/99		6/8/99	6/11/99	DJP	5030	DJP	
Compound	Res	ult Units	ÐF	Sample PQL .	Method PQL			
BENZENE	7	ug/Kg	1.1	6	5			
TOLUENE	<€	ug/Kg	1.1	6	5	,		
1,2-DIBROMOETHANE	<6	ug/Kg	1.1	6	5			
ETHYLBENZENE	6	ug/Kg	1.1	6	5	-		
NAPHTHALENE	J4	ug/Kg	1.1	6	5			
MTBE	<6	ug/Kg	1.1	6	5			
TOTAL XYLENES	J5	ug/Kg	1.1	6	5			
DIBROMOFLUOROMETHANE	114	4 %	1.1					
1,2-DICHLOROETHANE-D4	118	3 %	1.1					
TOLUENE-D8	103	3 %	1.1					
P-BROMOFLUOROBENZENE	124	4 %	1.1					

Report Notes:

J, O-13

1

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB140304

Matrix: SOIL

SDG Name: WP2792

Percent Solids: 84.4

Lab Sample ID: WP2792-006

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C Q	M	DF	
7439-92-1	LEAD	4.9		P	1	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-6

Report Date: 08/11/99

PO No. : N7912-P99264 Project

: CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 4 of 10

SAMPLE DESCRIPTION	IPLE DESCRIPTION MATRIX			SAMPLED BY			SAMPLED DATE RECEIVED			
25SLB140304		Solid		ROGER	FRANKLIN		06/07/9	9	06/08/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD		ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	84.	wt %	1.0	0.10	CLP/CIP	SOW	06/14/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc (dw) /msm PF11TSS7

CC: MS. LEE LECK TETRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-7

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

85

Method:

EPA 8270

Date Analyzed: 7/23/99

SSL SOCIETION SUM	Sample Description	Matrix	Sampled	l Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
Compound Result Units DF PQL PQL	25SLB160304	SL	6/7/9	9	6/8/99	6/16/99	РММ	EPA 3550	KRT
2-METHYLNAPHTHALENE	Compound	Re	esult	Units	DF	-			
2-METHYLNAPHTHALENE	NAPHTHALENE		400 u	g/Kg	1.2	400	330		
ACENAPHTHYLENE	2-METHYLNAPHTHALENE	<				400			
ACENAPHTHENE	ACENAPHTHYLENE	<	400 u	g/Kg					
FLUORENE	ACENAPHTHENE	<			1.2	400			
PHENANTHRENE <400	FLUORENE	•	400 u	g/Ka					
ANTHRACENE	PHENANTHRENE	<							
FLUORANTHENE <400	ANTHRACENE	<			1.2				
PYRENE	FLUORANTHENE	<4							
BENZO[A]ANTHRACENE <400 ug/Kg 1.2 400 330 CHRYSENE <400 ug/Kg 1.2 400 330 BENZO[B]FLUORANTHENE <400 ug/Kg 1.2 400 330 BENZO[K]FLUORANTHENE <400 ug/Kg 1.2 400 330 BENZO[A]PYRENE <400 ug/Kg 1.2 400 330 INDENO[1,2,3-CD]PYRENE <400 ug/Kg 1.2 400 330 DIBENZ[A,H]ANTHRACENE <400 ug/Kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/Kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/Kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/Kg 1.2 400 330 DITROBENZENE-D5 56 % 1.2 2-FLUOROBIPHENYL 57 % 1.2	PYRENE	<							
CHRYSENE	BENZO[A]ANTHRACENE	<4		-	_				
BENZO[B]FLUORANTHENE <400 ug/Kg 1.2 400 330 BENZO[K]FLUORANTHENE <400 ug/Kg 1.2 400 330 BENZO[A]PYRENE <400 ug/Kg 1.2 400 330 INDENO[1,2,3-CD]PYRENE <400 ug/Kg 1.2 400 330 DIBENZ[A,H]ANTHRACENE <400 ug/Kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/Kg 1.2 400 330 BINTROBENZENE-D5 56 % 1.2 2-FLUOROBIPHENYL 57 % 1.2	CHRYSENE	<4							
BENZO[K]FLUORANTHENE <400 ug/kg 1.2 400 330 BENZO[A]PYRENE <400 ug/kg 1.2 400 330 INDENO[1,2,3-CD]PYRENE <400 ug/kg 1.2 400 330 DIBENZ[A,H]ANTHRACENE <400 ug/kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/kg 1.2 400 330 NITROBENZENE-D5 56 % 1.2 2-FLUOROBIPHENYL 57 % 1.2	BENZO[B]FLUORANTHENE	<4							
BENZO[A]PYRENE <400 ug/kg 1.2 400 330 INDENO[1,2,3-CD]PYRENE <400 ug/kg 1.2 400 330 DIBENZ[A,H]ANTHRACENE <400 ug/kg 1.2 400 330 BENZO[G,H,I]PERYLENE <400 ug/kg 1.2 400 330 NITROBENZENE-D5 56 % 1.2 2-FLUOROBIPHENYL 57 % 1.2	BENZO[K]FLUORANTHENE	<4							
INDENO[1,2,3-CD]PYRENE	BENZO[A]PYRENE	<4		-					
DIBENZ[A,H]ANTHRACENE <400 ug/Kg	INDENO[1,2,3-CD]PYRENE	<4	_	•					
BENZO[G,H,I]PERYLENE <400 ug/kg	DIBENZ[A,H]ANTHRACENE	<4	_						
NITROBENZENE-D5 56 % 1.2 2-FLUOROBIPHENYL 57 % 1.2	BENZO[G,H,I]PERYLENE	<4	-	•	·- <u>-</u>				
2-FLUOROBIPHENYL 57 % 1.2	NITROBENZENE-D5			_		700	330		
TERRILENIA DA A	2-FLUOROBIPHENYL				_				
	TERPHENYL-D14			%	1.2				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-7

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

85

Method:

SW8260

Date Analyzed: 6/16/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB160304	SL 6/7/99		6/8/99	6/16/99	KRT	5030	KRT	
Compound	Res	sult Units	ÐF	Sample PQL	Method PQL			
BENZENE	8	ug/Kg	1.0	. 5	5			
TOLUENE	<		1.0	5	5			
1,2-DIBROMOETHANE	. <	5 ug/Kg	1.0	5	5			
ETHYLBENZENE	<		1.0	5	5			
NAPHTHALENE	J4	ug/Kg	1.0	5	5			
MTBE	<		1.0	5	5			
TOTAL XYLENES	<		1.0	5	5			
DIBROMOFLUOROMETHANE	11:		1.0	3	. •			
1,2-DICHLOROETHANE-D4	118	8 %	1.0					
TOLUENE-D8	12	5 %	1.0					
P-BROMOFLUOROBENZENE	103	3 %	1.0					

Report Notes:

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB160304

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 85.3

Lab Sample ID: WP2792-007

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF	
7439-92-1	LEAD	6.5			P	1	

Color Before: BROWN

Texture: FINE

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-7

Report Date: 08/11/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 5 of 10

SAMPLE DESCRIPTION		MATRIX			SAMPLED BY			SAMPLED DATE RECEIVED			
25SLB160304		Solid			ROGER FRANKLIN			06/07/99			
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD		ANALYZED	BY	NOTES		
Solids-Total Residue (TS)	85.	wt %	1.0	0.10	CLP/CIP	SOW	06/14/99	JF	1		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7 CC: MS. LEE LECK TEIRA TECH NUS FOSTER PALZA 7

661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-8

SDG:

WP2792

Report Date:

8/5/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

84

Method:

EPA 8270

Date Analyzed: 7/23/99

Sample Description	Matrix Sa	mpied Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB170304	SL	6/7/99	6/8/99	6/16/99	PMM	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	2600	ug/Kg	1.2	400	330		:
2-METHYLNAPHTHALENE	2000	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	<400	ug/Kg	1.2	400	330		
FLUORENE	<400	ug/Kg	1.2	400	330		
PHENANTHRENE	<400	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/Kg	1.2	400	330		
PYRENE	<400	ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		•
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	55	%	1.2				
2-FLUOROBIPHENYL	6 5	%	1.2				
TERPHENYL-D14	82	%	1.2				•

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-8

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix Sai	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB170304	SL	SL 6/7/99		6/11/99	JSS	5030	JSS
Compound	Result	Units	ÐF	Sample PQL	Method PQL		
BENZENE	E24000	ug/Kgdrywt	110	550	5		
TOLUENE	E85000	ug/Kgdrywt	110	550	5		
1,2-DIBROMOETHAÑE	<550	ug/Kgdrywt	110	550	5		
ETHYLBENZENE	E37000	ug/Kgdrywt	110	550	5		
NAPHTHALENE	16000	ug/Kgdrywt	110	550	5		
MTBE	4300	ug/Kgdrywt	110	550	5		
TOTAL XYLENES	180000	ug/Kgdrywt	110	550	5		
DIBROMOFLUOROMETHANE	101	- <i>5-1</i> (5-1)	110		3		
,2-DICHLOROETHANE-D4	132	%	110				
OLUENE-D8	101	%	110				
P-BROMOFLUOROBENZENE	96	%	110				

Report Notes:

Ε

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-8DL

SDG:

WP2792 8/2/99

Report Date:

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

84

Method:

SW8260 6/15/99

Date Analyzed:

Sample Description	Matrix :	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB170304	SL 6/7/99		6/8/99	6/15/99	DJP	5030	DJP
Compound	Resu	it Units	ÐF	Sample PQL .	Method PQL		
BENZENE	3200	ug/Kgdrywt	2300	12000	5		
TOLUENE	24000			12000	5		
1,2-DIBROMOETHANE	<1200		2300	12000	5		
ETHYLBENZENE	49000		2300	12000	5		
NAPHTHALENE	14000		2300	12000	5		
MTBE	<1200		2300	12000	5		
TOTAL XYLENES	25000		2300	12000	5		
DIBROMOFLUOROMETHANE	96	%	2300	12000	.		
1,2-DICHLOROETHANE-D4	94	%	2300				
TOLUENE-D8	109	~ %	2300				
P-BROMOFLUOROBENZENE	104	%	2300				

Report Notes:

0-2

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB170304

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 83.8

Lab Sample ID: WP2792-008

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF	
7439-92-1	LEAD	7.4			P	1	

Color Before: BROWN

Texture: FINE

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-8

Report Date: 08/11/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 6 of 10

SAMPLE DESCRIPTION		MATRIX			SAMPLED BY			SAMPLED DATE RECEIVED			
25SLB170304		Solid			ROGER FRANKLIN			06/07/99			
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD		ANALYZED	BY	NOTES		
Solids-Total Residue (TS)	84.	wt &	1.0	0.10	CLP/CIP	SOW	06/14/99	JF	1		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PALZA 7
661 ANDERSEN DR.

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-9

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

76

Method:

EPA 8270

Date Analyzed: 7/23/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB120203	SL	6/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT
Compound	Re	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	E10	0000 ug/Kg	1.3	430	330		
2-METHYLNAPHTHALENE	E74	400. ug/Kg	1.3	430	330	•	
ACENAPHTHYLENE	<4	30 ug/Kg	1.3	430	330		
ACENAPHTHENE	<4	30 ug/Kg	1.3	430	330		
FLUORENE	<4	30 ug/Kg	1.3	430	330		
PHENANTHRENE	54	10 ug/Kg	1.3	430	330		
ANTHRACENE	<4	30 ug/Kg	1.3	430	330		
FLUORANTHENE	<4:	30 ug/Kg	1.3	430	330		
PYRENE	J24	40 ug/Kg	1.3	430	330		
BENZO[A]ANTHRACENE	<43	30 ug/Kg	1.3	430	330		
CHRYSENE	<43	30 ug/Kg	1.3	430	330		
BENZO[B]FLUORANTHENE	<43		1.3	430	330		
BENZO[K]FLUORANTHENE	<43		1.3	430	330		
BENZO[A]PYRENE	<43	0 ug/Kg	1.3	430	330		
INDENO[1,2,3-CD]PYRENE	<43	0 ug/Kg	1.3	430	330		
DIBENZ[A,H]ANTHRACENE	<43		1.3	430	330		
BENZO[G,H,I]PERYLENE	<43		1.3	430	330		
NITROBENZENE-D5	50		1.3	-100	330		
2-FLUOROBIPHENYL	63	%	1.3				
TERPHENYL-D14	80		1.3				

Report Notes:

J, E

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-9DL

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

76

Method:

EPA 8270

Date Analyzed:

7/26/99

Sample Description	Matrix (Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB120203	SL	6/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT
Compound	Resu	Result Units		Sample PQL	Method PQL		
NAPHTHALENE	11000	ug/Kg	6.6	2200	330		
2-METHYLNAPHTHALENE	7900	ug/Kg	6.6	2200	330		
ACENAPHTHYLENE	<2200	ug/Kg	6 .6	2200	330		
ACENAPHTHENE	<2200	=	6.6	2200	330		
FLUORENE	<2200	ug/Kg	6.6	2200	330		
PHENANTHRENE	<2200		6.6	2200	330		
ANTHRACENE	<2200	_	6.6	2200	330		
FLUORANTHENE	<2200		6.6	2200	330		
PYRENE	<2200	_	6.6	2200	330		
BENZO[A]ANTHRACENE	<2200		6.6	2200	330		
CHRYSENE	<2200		6.6	2200	330		
BENZO[B]FLUORANTHENE	<2200		6.6	2200	330		
BENZO[K]FLUORANTHENE	<2200	5.5	6.6	2200	330		
BENZO[A]PYRENE	<2200	• •	6.6	2200	330		
INDENO[1,2,3-CD]PYRENE	<2200		6.6	2200	330		
DIBENZ[A,H]ANTHRACENE	<2200		6.6	2200			
BENZO[G,H,I]PERYLENE	<2200	-5.4	6.6		330		
NITPOPENZENE DE		-9·1·W	0.0	2200	330		

6.6

6.6

6.6

Report Notes:

NITROBENZENE-D5

2-FLUOROBIPHENYL

TERPHENYL-D14

41

59

74

%

%

0-2

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-9

SDG:

WP2792

Report Date: PO No.;

8/2/99 N7912-P99264

CTO #68

Project:

% Solids:

76

Method:

SW8260

Date Analyzed: 6/9/99

Sample Description	Matrix Sa	impled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB120203	SL	SL 6/7 <i>1</i> 99		6/9/99	НМР	5035	НМР	
Compound	Result	Units	ÐF	Sample PQL	Method PQL			
BENZENE	E100000	ug/Kgdrywt	150	750	5			
TOLUENE	E320000	ug/Kgdrywt	150	750	5			
1,2-DIBROMOETHANE	<750	ug/Kgdrywt	150	750	5			
ETHYLBENZENE	E380000	ug/Kgdrywt	150	750	5			
NAPHTHALENE	E160000		150	750	5			
MTBE	<750	ug/Kgdrywt	150	750	5			
TOTAL XYLENES	740000	ug/Kgdrywt	150	750	5			
DIBROMOFLUOROMETHANE	93	-5. Ga.,	150		J			
1,2-DICHLOROETHANE-D4	#251	%	150					
TOLUENE-D8	101	%	150					
P-BROMOFLUOROBENZENE	#127	%	150					

Report Notes:

E,#

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-9DL

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

76

Method:

SW8260

Date Analyzed: 6/11/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB120203	SL 6/7/99		6/8/99	6/11/99	DJP	5030	DJP
Compound	Result	Units	BF	Sample PQL	Method PQL		
BENZENE	120000	ug/Kgdrywt	15000	75000	5		
TOLUENE	360000	ug/Kgdrywt	15000	75000	5		
1,2-DIBROMOETHANE	<75000	ug/Kgdrywt	15000	75000	5		
ETHYLBENZENE	560000	ug/Kgdrywt	15000	75000	5		
NAPHTHALENE	210000	ug/Kgdrywt	15000	75000	5		
MTBE	<75000	ug/Kgdrywt	15000	75000	5		
TOTAL XYLENES	2200000	ug/Kgdrywt	15000	75000	5		
DIBROMOFLUOROMETHANE	102	%	15000	70000	J		
1,2-DICHLOROETHANE-D4	91	%	15000				
TOLUENE-D8	101	%	15000				
P-BROMOFLUOROBENZENE	101	%	15000				

Report Notes:

0-2

l

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB120203

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 76.0

Lab Sample ID: WP2792-009

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF	
7439-92-1	LEAD	26.2			P	1	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-9

Report Date: 08/11/99

PO No.

: N7912-P99264

Project

: CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 7 of 10

SAMPLE DESCRIPTION		MATRIX			ED BY	SAMPLED D	SAMPLED DATE RECEIVED		
25SLB120203	Solid		ROGER FRANKLIN		06/07/9	06/07/99			
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	76.	wt &	1.0	0.10	CLP/CIP S	SOW 06/14/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11TSS7 CC: MS. LEE LECK TETRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.

REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID:

CNC CHARLESTON

Lab Number:

WP2792-11

SDG:

WP2792

Report Date:

8/2/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

0.0

Method:

SW8260

Date Analyzed:

6/10/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25TL00501	SL 6/7/99		6/8/99	6/10/99	JSS	5030	JSS
Compound	Result	Units	ÐF	Sample PQL	Method PQL		
BENZENE	<5	ug/Kgdrywt	1.0	5	5		
TOLUENE .	<5	ug/Kgdrywt	1.0	5	5		
1,2-DIBROMOETHANE	· <5	ug/Kgdrywt	1.0	5	5		
ETHYLBENZENE	<5	ug/Kgdrywt	1.0	5	5		
NAPHTHALENE	<5	ug/Kgdrywt	1.0	5	5		
MTBE	<5	ug/Kgdrywt	1.0	5	5		
TOTAL XYLENES	<5	ug/Kgdrywt	1.0	5	5		
DIBROMOFLUOROMETHANE	104	-5 · 5 · · · · · · · · · · · · · · · · ·	1.0	J	J		
,2-DICHLOROETHANE-D4	101	%	1.0				
TOLUENE-D8	108	%	1.0				
P-BROMOFLUOROBENZENE	99	%	1.0				

Report Notes:

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-12

SDG:

WP2792

Report Date:

8/5/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

92

Method:

EPA 8270

Date Analyzed:

7/23/99

•									
Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
25SLB150304	SL	•	5/7/99	6/8/99	6/16/99	РММ	EPA 3550	KRT	
Compound	Re	esult	Units	DF	Sample PQL	Method PQL			
NAPHTHALENE	<	360	ug/Kg	1.1	360	330			
2-METHYLNAPHTHALENE	<	36 0	ug/Kg	1.1	360	330			
ACENAPHTHYLENE	<	360	ug/Kg	1.1	360	330			
ACENAPHTHENE	<	360	ug/Kg	1.1	360	330			
FLUORENE	<	360	ug/Kg	1.1	360	330			
PHENANTHRENE	<	360	ug/Kg	1.1	360	330			
ANTHRACENE	<	360	ug/Kg	1.1	360	330			
FLUORANTHENE	<	360	ug/Kg	1.1	360	330			
PYRENE	<3	360	ug/Kg	1.1	360	330			
BENZO[A]ANTHRACENE	<3	360	ug/Kg	1.1	360	330			0.64%
CHRYSENE	<3	360	ug/Kg	1.1	360	330			
BENZO[B]FLUORANTHENE	<3	360	ug/Kg	1.1	360	330			
BENZO[K]FLUORANTHENE	<3	360	ug/Kg	1.1	360	330			
BENZO[A]PYRENE	<3	36 0	ug/Kg	1.1	360	330			
INDENO[1,2,3-CD]PYRENE	<3	360	ug/Kg	1.1	360	330			
DIBENZ[A,H]ANTHRACENE	<3	60	ug/Kg	1.1	360	330			
BENZO[G,H,I]PERYLENE	<3	60	ug/Kg	1.1	360	330			
NITROBENZENE-D5	4	6	-3··G	1.1	000	330			
2-FLUOROBIPHENYL	.5	6	%	1.1					
TERPHENYL-D14	7	7 .	%	1 1					

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2792-12

SDG:

WP2792

Report Date:

8/2/99 N7912-P99264

PO No. :

CTO #68

Project:

% Solids:

92

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
25SLB150304	SL	6/7/99	6/8/99	6/11/99	DJP	5030	DJP
Compound	Resi	ult Units	ÐF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.2	6	5		
TOLUENE	<6		1.2	6	5		
1,2-DIBROMOETHANE	<6		1.2	6	5		
ETHYLBENZENE	<6		1.2	6	5		
NAPHTHALENE	<6	,	1.2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	121		1.2	J	3		
1,2-DICHLOROETHANE-D4	118		1.2				
TOLUENE-D8	112	••	1.2				
P-BROMOFLUOROBENZENE	87	% %	1.2				

1
INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB150304

Matrix: SOIL

SDG Name: WP2792

Percent Solids: 91.7

Lab Sample ID: WP2792-012

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	С	Q	M	DF	•
7439-92-1	LEAD	5.9			P	1	

Color Before: BROWN

Texture: COARSE

Color After: YELLOW

Clarity After: CLEAR

CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2792-12

Report Date: 08/11/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 8 of 10

SAMPLE DESCRIPTION M			ζ	SAMPLED BY		SAMPLED DATE RECEIVE		
25SLB150304	Solid		ROGE	ROGER FRANKLIN		06/07/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS) Total Combustible Organics	91. 1.4	wt % wt %	1.0		CLP/CIP SOW ASIM D2974-8			

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 06/11/99 by JF

08/11/99

LJO/baeajc(dw)/msm PF11VSS8

CC: MS. LEE LECK
TETRA TECH NUS
FOSTER PALZA 7
661 ANDERSEN DR.

2A SOIL SEMIVOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services

SDG No.: WP2792

Matrix: SOIL

Client	Lab	SMC1	SMC2	SMC3	Total
Sample ID	Sample ID	(NBZ) #	(FBP) #	(TPH) #	Out:
SBLK;061599	SBLK;061599	70	71	88	0
25SLB090304	WP2792-1	42	· 48	86	0
25SLB140304	WP2792-6	57	ස	91	0
25SLB160304	WP2792-7	56	57	· 83	0
25SLB170304	WP2792-8	55	65	82	0
25SLB150304	WP2792-12	46	56	77	0
25SLB100102	WP2792-2	49	57	75	0
25SLB110203	WP2792-3	53	60	81	0
25SLB130203	WP2792-4	47	71	75	0
25SLB130203D	WP2792-5	53	77	84	0
25SLB120203	WP2792-9	50	ස	80	0
LCS;061699	LCS;061699	71	80	86	0
25SLB130203DL	WP2792-4DL	37	ස	60	0
25SLB130203DDL	WP2792-5DL	0.	74	39	1
25SLB120203DL	WP2792-9DL	41	59	74	0

QC LIMITS

SMC1	(NBZ)	=	NITROBENZENE-D5	(14-107)
SMC2	(FBP)	=	2-FLUOROBIPHENYL	(32-109)
SMC3	(TPH)	=	TERPHENYL-D14	(26-116)

Column to be used to flag recovery value

^{*} Values are outside of QC limits

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

SBLK;061599

SDG:

WP2792

Report Date: PO No.:

8/5/99

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

EPA 8270

Date Analyzed:

7/23/99

Sample Description	Matrix Sai	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
SBLK;061599	SL	•	•	6/15/99	PMM	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<330	ug/Kg	1.0	330	330		
2-METHYLNAPHTHALENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHYLENE	<330	ug/Kg	1.0	330	330		
ACENAPHTHENE	<330	ug/Kg	1.0	330	330		
FLUORENE	<330	ug/Kg	1.0	330	330		•
PHENANTHRENE	<330	ug/Kg	1.0	330	330		•
ANTHRACENE	<330	ug/Kg	1.0	330	330		
FLUORANTHENE	<330	ug/Kg	1.0	330	330		
PYRENE	<330	ug/Kg	1.0	330	330		
BENZO[A]ANTHRACENE	<330	ug/Kg	1.0	330	330		
CHRYSENE	<330	ug/Kg	1.0	330	330		
BENZO[B]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[K]FLUORANTHENE	<330	ug/Kg	1.0	330	330		
BENZO[A]PYRENE	<330	ug/Kg	1.0	330	330		
NDENO[1,2,3-CD]PYRENE	<330	ug/Kg	1.0	330	330		
DIBENZ[A,H]ANTHRACENE	<330	ug/Kg	1.0	330	330		
BENZO[G,H,I]PERYLENE	<330	ug/Kg	1.0	330	330		
NITROBENZENE-D5	70	- % - %	1.0				
2-FLUOROBIPHENYL	71	%	1.0				
TERPHENYL-D14	88	%	1.0				

Lab File: 13932

Sample ID: LCS;061699

Date Run: 7/26/99

Analyst: KRT

Time Injected 9:35:00 AM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
2-METHYLNAPHTHALENE	1667	1460	88	60-140
ACENAPHTHENE	1667	1220	73	60-140
ACENAPHTHYLENE	1667	1220	73	60-140
ANTHRACENE	1667	1220	73	60-140
BENZO[A]ANTHRACENE	1667	1240	74	60-140
BENZO[A]PYRENE	1667	1200	72	60-140
BENZO[B]FLUORANTHENE	1667	1320	79	60-140
BENZO[G,H,I]PERYLENE	1667	1320	79	60-140
BENZO[K]FLUORANTHENE	1667	1320	79	60-140
CHRYSENE	1667	1410	84	60-140
DIBENZ[A,H]ANTHRACENE	1667	1210	72	60-140
FLUORANTHENE	1,667	1220	73	
FLUORENE	1667	1220	73	60-140
INDENO[1,2,3-CD]PYRENE	1667	1320	79	60-140
NAPHTHALENE	1667	1210		60-140
PHENANTHRENE	1667		73	60-140
PYRENE		1340	80	60-140
IRENE	1667	1370	82	60-140

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services

SDG No.: WP2792

Matrix:

WATER

Client	Lab Secondo ID	SMC1	SMC2	SMC3	SMC4	Total
Sample ID	Sample ID	(DFM) #	(DCA) #	(TOL)#	(BFB) #	Out
LCSF10A	LCSF10A	93	87	103	106	0
VBLKF10A	VBLKF10A	94	87	103	98	0
LCSF11A	LCSF11A	102	86	101	103	0
VBLKF11B	VBLKF11B	97	86	101	98	0
LCSF14A	LCSF14A	98	80	103	101	0
VBLKF14A	VBLKF14A	98	84	102	96	0
LCSF15A	LCSF15A	96	87	107	106	0
VBLKF15B	VBLKF15B	94	93	106	96	0
CSM10A	LCSM10A	102	94	105	99	0
/BLKM10B	VBLKM10B	104	96	108	98	0
.CSQ09A	LCSQ09A	86	84	88	84	0
/BLKQ09A	VBLKQ09A	83	81	90	88	0

QC LIMITS

SMC1	(DFM)	=	DIBROMOFLUOROMETHANE	(75-129)
SMC2	(DCA)	=	1,2-DICHLOROETHANE-D4	(65-135)
SMC3	(TOL)	=	TOLUENE-D8	(82-120)
SMC4	(BFB)	=	P-BROMOFLUOROBENZENE	(69-125)

[#] Column to be used to flag recovery value

^{*} Values are outside of QC limits

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF10A

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

Date Analyzed:

SW8260 6/10/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
/BLKF10A	AQ	-	-	6/10/99	DJP	5030	DJP
Compound	Resi	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		-
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	-	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	94	%	1.0				
,2-DICHLOROETHANE-D4	87	%	1.0				
OLUENE-D8	103	%	1.0				
P-BROMOFLUOROBENZENE	98	%	1.0				

Lab File: F0891

Sample ID: LCSF10A

Date Run: 6/10/99

Analyst: DJP

Time Injected 8:12:00 PM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	55.7	111	60-140
BENZENE	50	54.0	108	60-140
ETHYLBENZENE	50	54.4	109	
МТВЕ	50	50.7	101	60-140
NAPHTHALENE	50	50.9		60-140
TOLUENE			102	60-140
	50	55.4	111	60-140
TOTAL XYLENES	150	162	108	60-140

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Sulte 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF11B

SDG: Report Date:

WP2792 8/2/99

PO No.:

N7912-P99264

Project:

CTO#68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 6/11/99

Sample Description	Matrix :	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF11B	PA	•	•	6/11/99	JSS	5030	J\$S
Compound	Resu	lt Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5	•	
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	· <5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	97	%	1.0		_		
1,2-DICHLOROETHANE-D4	86	%	1.0				
TOLUENE-D8	101	%	1.0				
P-BROMOFLUOROBENZENE	98	%	1.0				

Lab File: F0909

Sample ID: LCSF11A

Date Run: 6/11/99

Analyst: JSS

Tim

Time Injected 11:39:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	51.1	102	60-140
BENZENE	50	54.0	108	60-140
ETHYLBENZENE	50	53.0	106	
МТВЕ	50	51.8	104	60-140
NAPHTHALENE	50	50.9		60-140
TOLUENE			102	60-140
	50	54.6	109	60-140
FOTAL XYLENES	150	157	105	60-140

Lab File: F0944

Sample ID: LCSF14A

Date Run: 6/14/99

Analyst: DJP

Time Injected 11:07:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	49.4	99	60-140
BENZENE	50	51.5	103	60-140
ETHYLBENZENE	50	51.9	104	60-140
MTBE	50	46.8	94	60-140
NAPHTHALENE	50	49.9	100	60-140
TOLUENE	50	53.1	106	60-140
TOTAL XYLENES	150	156	104	60-140

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKF15B

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method: Date Analyzed:

SW8260 6/15/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKF15B	ΩA	•	•	6/15/99	DJP	5030	DJP

						 DJF
Compound	Result	Units	ÐF	Sample PQL	Method PQL	
BENZENE	<5	ug/L	1.0	5	5	
TOLUENE	<5	ug/L	1.0	5	5	
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5	
ETHYLBENZENE	<5	ug/L	1.0	5	5	
NAPHTHALENE	<5	ug/L	1.0	5	5	
MTBE	<5	ug/L	1.0	5	5	
TOTAL XYLENES	<5	ug/L	1.0	5	5	
DIBROMOFLUOROMETHANE	94	%	1.0	_	•	
1,2-DICHLOROETHANE-D4	93	%	1.0			
TOLUENE-D8	106	%	1.0			
P-BROMOFLUOROBENZENE	96	%	1.0			

Lab File: F0977

Sample ID: LCSF15A

Date Run: 6/15/99

Analyst: DJP

Time Injected 9:26:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	51.1	102	60-140
BENZENE	50	54.7	109	60-140
ETHYLBENZENE	50	55.0	110	60-140
MTBE	50	49.4	99	60-140
NAPHTHALENE	50	49.3	98	60-140
FOLUENE	50	56.0	112	60-140
TOTAL XYLENES	150	162	108	60-140

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKM10B

SDG:

WP2792

Report Date: PO No.:

8/2/99

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed:

6/10/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKM10B	AQ	•	•	6/10/99	JSS	5030	JSS
Compound	Result	Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5	•	
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	< 5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	- 5		
DIBROMOFLUOROMETHANE	104	%	1.0		•		
1,2-DICHLOROETHANE-D4	96	%	1.0				
TOLUENE-D8	108	. %	1.0				
P-BROMOFLUOROBENZENE	98	%	1.0				

Lab File: M0599

Sample ID: LCSM10A

Date Run: 6/10/99

Analyst: JSS

Time Injected 9:52:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	44.2	88	60-140
BENZENE	50	51.5	103	60-140
ETHYLBENZENE	50	51.0	102	60-140
MTBE	50	45.3	91	60-140
NAPHTHALENE	50	45.7	91	60-140
TOLUENE	50	51.6	103	60-140
TOTAL XYLENES	150	149	99	60-140

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

1,2-DICHLOROETHANE-D4

P-BROMOFLUOROBENZENE

TOLUENE-D8

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKQ09A

SDG:

WP2792

Report Date:

8/2/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

N/A

Date Analyzed:

SW8260 6/9/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKQ09A	AQ	-	-	6/9/99	HMP	5030	НМР
Compound	Resu	ılt Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	83	%	1.0	J	3		

1.0

1.0

1.0

81

90

88

%

%

Lab File: Q5423

Sample ID: LCSQ09A

Date Run: 6/9/99

Analyst: HMP

Time Injected 11:36:00 AM

Matrix: AQ

Compound Name	Spike Amt (ug/L)	Result (ug/L)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	48.7	97	60-140
BENZENE	50	49.6	99	60-140
ETHYLBENZENE	50	57.1	114	60-140
мтве	50	43.1	86	60-140
NAPHTHALENE	50	48.0	96	60-140
POLUENE	50	50.4	101	60-140
FOTAL XYLENES	150	149	99	60-140

2A SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: Katahdin Analytical Services

SDG No.: WP2792

Matrix:

SOIL

Client Sample ID	Lab Sample ID	SMC1 (DFM)#	SMC2 (DCA) #	SMC3 (TOL)#	SMC4 (BFB) #	Total
•	1			(10L)#	(BFB)#	Out
MBLK061099	MBLK061099	92	86	102	95	0
25SLB130203DL	WP2792-4DL	92	87	103	104	0
25SLB130203DDL	WP2792-5DL	100	90	100	100	0
25SLB120203DL	WP2792-9DL	102	91	101	101	0
25SLB100102	WP2792-2	92	104	108	120	0
25SLB170304	WP2792-8	101	132	101	96	0
25SLB100102DL	WP2792-2DL	95	96	106	109	0
25SLB170304DL	WP2792-8DL	96	94	109	104	0
25TL00501	WP2792-11	104	101	108	99	0
25SLB130203	WP2792-4	88	106	89	98	0
25SLB130203D	WP2792-5	99	150*	88	106	1
25SLB120203	WP2792-9	93	251 *	101	127	1
LCSZ11A	LCSZ11A	100	100	100	95	0
VBLKZ11B	VBLKZ11B	130	126	119	88	0
25SLB110203	WP2792-3	82	92	94	88	0
25SLB140304	WP2792-6	119	182*	96	100	1
25SLB150304	WP2792-12	121	118	112	87	
25SLB140304RE	WP2972-6RE	114	118	103	124	0
CSZ16A	LCSZ16A	101	112	107	103	0
/BLKZ16B	VBLKZ16B	125	127	120	105	0
25SLB090304	WP2792-1	88	92	86	72	0
25SLB160304	WP2792-7	115	118	125	103	0

QC LIMITS

SMC1	(DFM)	=	DIBROMOFLUOROMETHANE	(69-148)
SMC2	(DCA)	×	1,2-DICHLOROETHANE-D4	(66-149)
SMC3	(TOL)	=	TOLUENE-D8	(68-147)
SMC4	(BFB)	=	P-BROMOFLUOROBENZENE	(64-152)

[#] Column to be used to flag recovery value

^{*} Values are outside of QC limits

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

MBLK061099

SDG:

WP2792 8/2/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

SW8260

Date Analyzed:

6/10/99

Sample Description	Matrix S	ampled Date	oled Date Rec'd Date		Ext'd By	Ext. Method	Analyst	
MBLK061099	SL	•			DJP	5030		
Compound	Resul	units	DF	Sample PQL	Method PQL			
BENZENE	<600	ug/Kgdrywt	120	600	5	, , , , , , , , , , , , , , , , , , , ,		
TOLUENE	<600	ug/Kgdrywt		600	5			
1,2-DIBROMOETHANE	<600	ug/Kgdrywt		600	5			
THYLBENZENE	<600	ug/Kgdrywt		600	5			
NAPHTHALENE	<600	ug/Kgdrywt		600	5			
ATBE	<600	ug/Kgdrywt		600	5			
TOTAL XYLENES	<600	ug/Kgdrywt	120	600	5			
BROMOFLUOROMETHANE	92	%	120	555	J			
,2-DICHLOROETHANE-D4	86	%	120					
OLUENE-D8	102	%	120					
P-BROMOFLUOROBENZENE	95	%	120					

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

VBLKZ11B

SDG:

WP2792 8/2/99

PO No.:

N7912-P99264

CTO #68

Project:

% Solids:

100

Method:

SW8260

Date Analyzed:

6/11/99

Sample Description	Matrix San	npled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst		
VBLKZ11B	SL	SL -		6/11/99	DJP	5030	DJP		
Compound	Result	Units	DF	Sample PQL	Method PQL				
BENZENE	<5	ug/Kg	1.0	5	5	•			
TOLUENE	<5	ug/Kg	1.0	5	5				
1,2-DIBROMOETHANE	<5	ug/Kg	1.0	5	5				
ETHYLBENZENE	<5	ug/Kg	1.0	5	5				
NAPHTHALENE	<5	ug/Kg	1.0	5	5				
MTBE	<5	ug/Kg	1.0	5	5				
TOTAL XYLENES	<5	ug/Kg	1.0	5	. 5				
DIBROMOFLUOROMETHANE	130	%	1.0		-				
1,2-DICHLOROETHANE-D4	126	%	1.0						
TOLUENE-D8	119	%	1.0						
P-BROMOFLUOROBENZENE	88	%	1.0						

Lab File: Z1075

Sample ID: LCSZ11A

Date Run: 6/11/99

Analyst: DJP

Time Injected 2:41:00 PM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)	
1,2-DIBROMOETHANE	50	50.0	100	60-140	
BENZENE	50	51.8	104	60-140	
ETHYLBENZENE	50	66.1	132	60-140	
MTBE	50	50.7	101	60-140	
NAPHTHALENE	50	62.2	124	60-140	
TOLUENE	50	50.9	102	60-140	
TOTAL XYLENES	150	202	135	60-140	

Client:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

VBLKZ16B

SDG:

WP2792

Report Date: PO No.:

8/2/99

N7912-P99264

Project:

CTO #68

% Solids:

100

Method:

SW8260

Date Analyzed:

6/16/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
VBLKZ16B	SL	SL -		6/16/99	KRT	5030	KRT
Compound	Resu	ılt Units	DF	Sample PQL	Method PQL		
BENZENE	<5	ug/Kg	1.0	5	5		
TOLUENE	<5	ug/Kg	1.0	5	5	÷	
1,2-DIBROMOETHANE	<5	ug/Kg	1.0	5	5		
ETHYLBENZENE	<5	ug/Kg	1.0	5	5		
NAPHTHALENE	<5	ug/Kg	1.0	5	5		
MTBE	<5	ug/Kg	1.0	5	5		
TOTAL XYLENES	<5	ug/Kg	1.0	5	5		
DIBROMOFLUOROMETHANE	125		1.0		-		
,2-DICHLOROETHANE-D4	127	%	1.0				
TOLUENE-D8	120	%	1.0				
P-BROMOFLUOROBENZENE	. 105	%	1.0				

Lab File: Z1119

Sample ID: LCSZ16A

Date Run: 6/16/99

Analyst: KRT

Time Injected 2:17:00 PM

Matrix: SL

Compound Name	Spike Amt (ug/Kg)	Result (ug/Kg)	Rec (%)	Limits (%)
1,2-DIBROMOETHANE	50	51.8	104	60-140
BENZENE	50	53.8	108	60-140
ETHYLBENZENE	50	64.3	129	60-140
МТВЕ	50	53.9	108	60-140
NAPHTHALENE	50	63.2	126	60-140
TOLUENE	50	52.5	105	60-140
TOTAL XYLENES	150	201	134	60-140

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB090304S

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 80.8

Lab Sample ID: WP2792-001S

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

	Spiked	Sample	Spike		Control Limits ((%R)
Analyte	Sample Result C	Result C	Added	%R Q	Low H	ligh M
LEAD	64.6423	10.4929	53.82	100.6	75	125 P

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB090304S

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 80.8

Lab Sample ID: WP2792-001P

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

	Spiked	Sample	Spike		Control Limits (%R)					
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	M.			
LEAD	61.0438	10.4929	50.32	100.5	75	125	P			

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Client Field ID: 25SLB090304

Matrix: SOIL

SDG Name:

WP2792

Percent Solids: 80.8

Lab Sample ID: WP2792-001

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	Control Limits	Spike Result	C Spike Dup. Result	С	RPD	Q	M	
LEAD		64.6423	61.0438		5.7		P	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSSPG07ICS0

Matrix: SOIL

SDG Name: WP2792

QC Batch ID: PG07ICS0

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

Analyte	TRUE	FOUND	% R	LIMITS (%)			
LEAD	66.0	71.20	107.9	68	132		

Method Blank and Laboratory Control Sample Results

Client:	Tetra Tech NUS	
Work Order:	WP2792	

METHOD BLANK RESULTS LABORATORY CONTROL SAMPLE RESULTS Date Date Concentration Practical True Measured Percent Acceptance Acceptance of of Units Measured Acceptance Quantitation Units Value Value Recovered Range Range Parameter Prep **Analysis** in Blank Range Level** (%) (mg/kg) TS -Total Residue 11-Jun-99 14-Jun-99 wt % 0.10 < < 0.10 wt % 90 0.10 89.6 99.6 80-120 11-Jun-99 14-Jun-99 wt % < 0.10 < 0.10 0.10 TCO-Total Combustible Organics | 11-Jun-99 14-Jun-99 wt % < 0.10 < 0.10 0.10

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory and method specified acceptance range except as noted.

^{**} Practical quantitation level is the lowest concentration measurable for samples with normal chemical and physical composition during routine laboratory operations.

Duplicate and Matrix Spike/Matrix Spike Duplicate Results

Client:	Tetra Tech NUS	
Work Order:	WP2792	

DUPLICATE RESULTS

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

								MATTER OF TREMATION OF THE DOT LICATE RESULTS									
	1	l	Samp	ole			Acceptance	Concentration or Quantity				Matrix Spike Recovery (%)					
		•	Measure		Mean		Range	Units S	Sampl	Spike	Sample			Sample		RPD	Acceptance
Parameter	Sample No	Units	Rep 1	Rep 2	Conc	RPD	for RPD]					+Spike		Range	(%)	Range
						(%)	(%)	l			Dup 1	Dup 2	Dup I	Dup 2	(%)	()	(%)
TS		mg/L		83.8	83.9	0.1	0-20	mg/L		NA					75-125		0-20
	WP2792-12			91.7	91.5	0.4	0-20	mg/L		NA		******			75-125		0-20
TCO	WP2792-12	mg/L	1.40	1.37	1.39	2.2	0-20	mg/L		NA					75-125		0-20

RPD = Relative percent difference, which is the absolute value of the difference between two replicate results divided by the mean concentration then multiplied by 100%.

NA = Not applicable.

DATA QUALITY COMMENTS:

Results of all quality control measurements are within the laboratory or contract specified acceptance range except as noted. The laboratory does not use the sample duplicate and matrix spike acceptance ranges as acceptance criteria for a specific analysis. Sample duplicate and matrix spike data are used to evaluate method performance in the environmental sample matrix only. Please refer to LCS data for assessment of quality control for each parameter.

CASE NARRATIVE

for

Katahdin Analytical Westbrook, ME

Former Charleston Naval Complex Site SDG #96242

June 29, 1999

Laboratory Identification:

General Engineering Laboratories, Inc. (GEL)

Mailing Address:

P.O. Box 30712 Charleston, SC 29417

Express Mail Delivery and Shipping Address:

2040 Savage Rd Charleston, SC 29414

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

The samples from the former Charleston Naval Complex site arrived at General Engineering Laboratories, Inc., Charleston, SC on June 7, 1999, for environmental analyses. All sample containers arrived without any visible signs of tampering or breakage. The samples were delivered with chain of custody documentation and signatures.

The following samples were received by the laboratory:

Laboratory	Sample	
Identification	Description	
9906242-01	25SLB130203	
9906242-02	25SLB130203D	
9906242-03	25SLB50304	
9906242-04	25SLB150304D	

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are listed below by analytical parameter.

Internal Chain of Custody:

Custody was maintained for all samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, and General Chemistry.

The following are definitions of reporting limits used at General Engineering Laboratories:

DL Detection Limit: The minimum level of an analyte that can be determined (identified not quantified) with 99% confidence. The values are normally achieved by preparing and analyzing seven aliquots of laboratory water spiked 1 to 5 times the estimated MDL, taking the standard deviation and multiplying it against the one-tailed t-statistic at 99%. This computed value is then verified for reasonableness by repeating the study using the concentration found in the initial study, calculating an F-ratio, and computing the final limit. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The detection limit is the minimum concentration of a substance that can be identified, measured, and reported with 99% confidence that the analyte concentration is above zero. It answers the question "Is It Present."

QL Quantitation Limit: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The QL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes the QL analyte concentration is selected as the lowest non-zero standard in the calibration curve.

Sample QL's are highly matrix-dependent. Sample specific preparation and dilution factors are applied to these limits when they are reported.

The QL is always \geq DL.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

> Valerie S. Davis Project Manager

fc:saic9906242%

Case Narrative for KATA SDG# 96242

TOTAL ORGANIC CARBON

Analytical Batch Number: 151981

Analytical Method: SW846 9060 Modified

Laboratory Number	Sample Description	
9906242-03	25SLB50304	
9906242-04	25SLB150304D	
QC622750	Blank	
QC622751	Duplicate of 9906242-03	
QC622752	Post Spike of 9906242-03	
QC622753	Laboratory Control Sample	

Sample Preparation:

All samples were prepared in accordance with accepted procedures. The method quoted is only for liquid samples. It is modified to handle soils analysis.

Instrument Calibration:

The instrument used was a Dohrmann DC-190 high temperature combustion TOC analyzer with a Dohrmann solids boat sampler. The instrument was properly calibrated on the day of the analysis.

Sample Preparation:

All samples were prepared in accordance with accepted procedures.

Instrument Calibration:

The instrument used was a Dohrmann DC-80 TOC analyzer. The instrument was properly calibrated.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The post spike was run on the following Sample Number.

9906242-03

All analyte recoveries in the post spike were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

Dilutions:

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

Additional Comments:

TOC solid samples are are tested to determine if inorganic carbon such as carbonates and bicarbonates are present in the sample. If so, the sample is acidified to remove the inorganic carbon, then dried in a low temperature oven. Because the sample portion is dried before analysis, the percent moisture correction is not applied to the TOC solid result.

TOTAL PETROLEUM HYDROCARBONS

Analytical Batch Number: 151686

Analytical Method: SW846 9071A

Laboratory Number	Sample Description						
9906242-01	25SLB130203						
9906242-02	25SLB130203D						
QC621595	Blank						
QC621596	Laboratory Control Sample						
QC621599	Duplicate of 9906242-01						
QC621600	Matrix Spike of 9906242-01						

Instrument Calibration:

The balance was properly calibrated.

Holding Time:

All samples were analyzed within the required holding time.

Blanks:

No target analytes were detected in the method blank above the required acceptance limit.

Spike Analyses:

The matrix spike was run on the following Sample Number.

9906242-01

All analyte recoveries in the matrix spike were within the required acceptance limits.

Laboratory Control Samples:

All analyte recoveries in the laboratory control sample were within the required acceptance limits.

Sample Duplicates:

All sample duplicate results were within the required acceptance limits.

~	21		49			
D	ш	ш	u	α	П	S

None of the samples were diluted.

Non Conformance Reports:

There were no Nonconformance Reports associated with this batch.

The preceding narratives have been reviewed by: hulf Date: 01/25/19

CHAIN OF CUSTODY RECORD

General Engineering Laboratories, Inc. 2040 Savage Road Charleston, South Carolina 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

Company Comp				<u> </u>				62					1.00				18.			. 									Ī	
Company Teta Tech NULS SAMPLE ID DATE TIME 1980	Habbe			18	14		al	1. 6	m	<u>y</u>	en.	<u> </u>		_ .				·	Dama	-t-a-	-		Date	:	Time:	Rece	elved by	:		
Tollected by/Company Tetra tech NUS SAMPLE ID DATE TIME TIME TIME TOURD	lipquished by!	,	Date:	Tim		Щ	Receiv	ed be																				خيرت د د د		
Tollected by/Company Tetra tech NUS SAMPLE ID DATE TIME TIME TIME TOURD				H	+	H	_	_	_	_	\dashv	\dashv	_	_			_	_	_	-							i		· · · · · · · · · · · · · · · · · · ·	
SAMPLE ID DATE TIME WE TIME TO DO THE CONTROL OF THE COLOR OF THE COLO				H	+	H	\dashv	_	\dashv		-	\dashv		\dashv	_				\dashv											
SAMPLE ID DATE TIME WE CONTAIN A COLD OF A COL				††	\dagger	\prod	1			\dashv	\neg	_	\dashv	\dashv	\dashv			\dashv	-	\dashv									·	
SAMPLE ID DATE TIME WE CONTAIN A COLD OF A COL																														
The test of the te																														
The test of the te					1																									
The test of the te				\prod	-	\prod	_																		. ,					
SAMPLE ID DATE TIME WE TIME WAS TOUCH TO THE TOWN ON THE TOWN OF T				- -	+	\prod								_																
Tollected by/Company Tetra tech NUS SAMPLE ID DATE TIME HAND OF HAD DO TO TO TO TO TO TO TO TO TO TO TO TO TO				+	+	H										_						<u> </u>								
The Tech div Piled of Time In the Piled of Time In		- 1 1		+	1	1	-		^							_								-				<u>-</u>		
SAMPLE ID DATE TIME No. COMPONENT TOTAL FINANCE FOR CONTAINING A SPECIAL FOR CONTAINING A SPECIA	\$ 54 B15 4300 D	6/1/49	1115		1		1									-														, ₁
SAMPLE ID DATE TIME No. COMPONENT TOTAL FIRST SPECIFIC FOR SOUTH AND STATE SPECIFIC FOR SPECIFIC	-5 SL1318 4364	6/7/99	1115		V V	Ä	1		Υ													-			<i>)</i>		,,		-/-	C_{0}
SAMPLE ID DATE TIME WELL COMPONENT TOTAL SOUTH AND AND AND AND AND AND AND AND AND AND					Y	7	١																		,		(1	<u>.</u>	9	2
N. T. I. d. 14. W. I. c. I. c. T. C. Y. S. S. S. S. S. S. S. S. S. S. S. S. S.	Z552B130263	6/7/94	1040		4	X	1		*															X	FI	D &	كجدرا	ابد	: > >	5000
N. T. J. A. I. A. I. A. I. C. T. C. Y. S. S. S. S. S. S. S. S. S. S. S. S. S.	SAMPLE ID	DATE	TIME	WELL	SOIL	SEAB COMP	# OF C	рН, сог	TOC/D	TOX	Chlorid Sulfide	Nitrite	VOC -	METAL	Pesticid	Herbick	Total P	Acid Ex	BAN Ext	PCB's	Cyamide	Cellform		TPA			Re	mar	ks	
N. T. l. dua Willer C. T. C. Y. St. St. St. St. St. St. St. St. St. St	Tetia tech	Nu	ς				ONTAI	ductivi	8		e, Fluori	Nitrate	Specify	S-spec		٠	cno	tractab	ractable			- speci		1						
Client Name/Facility Name SAMPLE ANALYSIS REQUIRED (x) - use remarks area to specify specific compounds or methods Use For P in the boxes to indicate whether	Collected by/Company	HilalyT	tical				NERS	٦	+	+	4—		4		ᆫ	1	1_1	1_1	<u> </u>	-	Н	2	Ш		•					
	lient Name/Facility N	ame	(· C					<u> </u>	SAM	IPLE .	ANAL	YSIS	REQU	IRED	(x) - u	se rema	rks area	to spec	ify spec	ific co	mpound	ds or mo	thods		U	se F or	P in the l	boxes to	indicate wh	ther

Page_____ of _____

INDUSTRIAL SAMPLE RECEIPT REVIEW

Received by GC Date 6-5-59

GENERAL ENGINEERING LABORATORIES

Meeting today i needs with feviron for the more of the color of t

	•			
SA	MPLE REVIEW CRITERIA	TES	NO	COMMENTS/OUALIFIERS
1.	Were shipping comminers remived issue and seried? Call project Manager if No.		ł	
2.	is the shipment identified as RADIOACTIVE and/or from a DOE site or subcontainer (see list in EPI SOP S-007)?	-	1	
	If YES, was the shipment screened following the enfockasiony survey throughout (EPI SOP S-007)?			
	Were the survey results regarive? Call Project Manager if No.		-	
3.	Were chain of custody documents included?	1		
4.	Were chain of ensucy documents completed properly? (Ink. signed, much concinents)			
5.	Did all samples container arrive inder? (seeled , morokes)? Call Project Manager if No	1		
6.	Were all sample containers properly bibeled?	1/		
7.	Were proper sample containes received?	ارا		
8.	Preserved samples checked for proper pit?	1/1		
9.	Were samples preserved properly? If no. list samples & tess	11		
10.	Shipping container temperature checked?	11		
11.	Was shipping comminer temperature within specifications (4+3C) If no. Call Project Manager	11		4.C
12.	Were samples received within holding time? if No. Call Project Manager	11		
13.	Were YOA visls free of bendspace?	1+	1	

REVIEW Sustan handa DATE 10-8-89	24 - SEALS ATTACHED NSA NO SEALS ATTACHED
----------------------------------	---

Client

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Parameter

Report Date: June 24, 1999

Page 1 of 1

Sample ID Lab ID

: 25SLB130203 : 9906242-01

Matrix

: Soil

Date Collected

: 06/07/99

Date Received

: 06/07/99

Priority

Qualifier

: Routine

Collector	: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Dat	: Time	Batch	M
General Chemistry	7	-			*					
Total Rec. Petro. I	lydrocarbons (1560	59.0	118	mg/kg	1.0	AAT 06/22/	99 0950	151686	5,
Evaporative Loss	@ 105 C	15.0	1.00	1.00	wt%	1.0				

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Jul 9. 1

T LUTTUR ANNO 1008 FEETH DIVIN NAVE OLDER ANNO 1008 BARN DE SELECTION

[&]quot; indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 24, 1999

Page | of |

Sample ID

: 25SLB130203D

Lab ID Matrix

: 9906242-02

Date Collected

: Soil

: 06/07/99

Date Received

: 06/07/99

: Routine

Priority Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF Analyst Date Time Batch M
General Chemistry Total Rec. Petro. I Evaporative Loss	lydrocarbons	426 11.0	56.0 1.00	112 1.00	mg/kg wt%	1.0 AAT 06/22/99 0950 151686 1 1.0 GJ 06/08/99 1455 150962 2

M = Method	Method-Description	
M 1 M 2	SW846 9071A EPA 3550	- · · · · · · · · · · · · · · · · · · ·

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 24, 1999

Page 1 of 1

25SLB1519314

Sample ID Lab ID

Lab ID Matrix

Date Collected

Date Received

Priority Collector : 25\$LB50304 : 9906242-03

Soil

: 06/07/99 : 06/07/99 : Routine

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
General Chemistr	y										
Evaporative Loss	@ 105 C	10.0	1.00	1.00	wt%	1.0	GJ	06/08/99	1455	150962	2)
Total Organic Car	bon	<i>7</i> 71	43.1	100	mg/kg	1.0	LIB	06/23/99	1452	151981	l

M = Method	Method-Description	
M 1	EPA 3550	
M 2	SW846 9060 Modified	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Client

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 24, 1999

Page 1 of 1

Sample ID Lab ID Matrix Date Collected Date Received Priority

Collector

: 25SLB150304D : 9906242-04 : Soil

: 06/07/99 : 06/07/99

: Routine : Client

Parameter	Qualifier	Result	DL	RL	Units	DF Ana	lyst Date	Time	Batch M
General Chemistr Evaporative Loss Total Organic Car	@ 105 C	10.0 460	1.00 43.1	1.00 100	wt% mg/kg	1.0 GJ 1.0 LS	06/08/99 06/23/99		150962 1 151981 2

M = Method	Method-Description
M 1	EPA 3550
M 2	SW846 9060 Modified

Notes:

The qualifiers in this report are defined as follows:

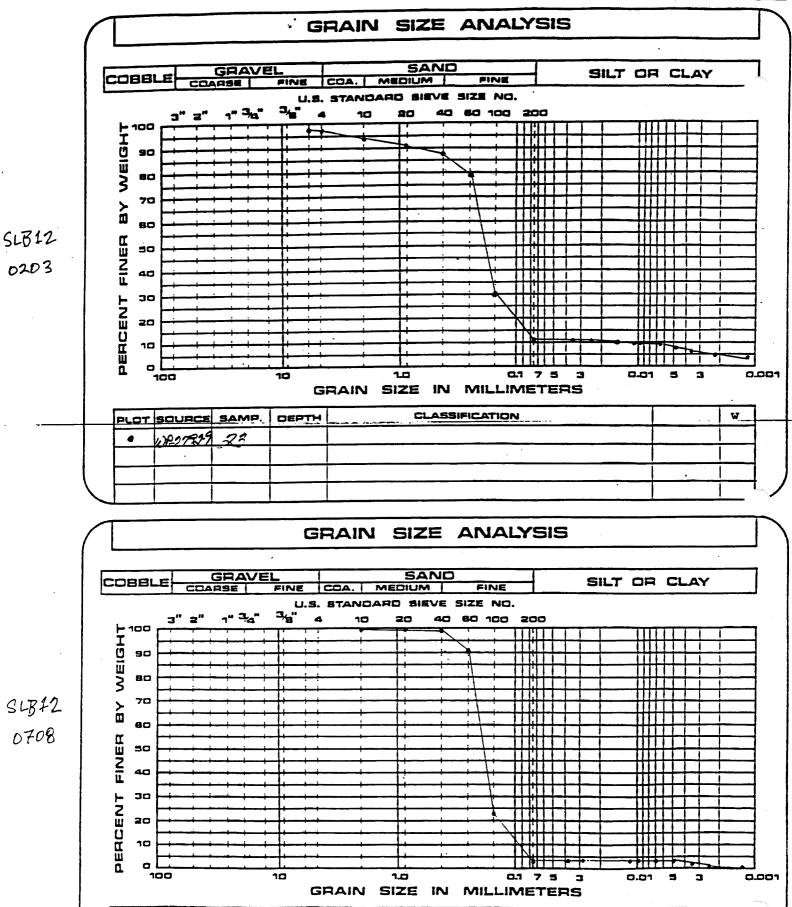
ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.


Reviewed By

! (IIII i lana lana lati dini dirik kuli dalir imi diliki koto bim

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.

JOB NO: 97-008

W

CLASSIFICATION

PLOT SOURCE SAMP.

W0219.710

24

DEPTH

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No.

99008

Date

06/09/1999

Project

MISCELLANEOUS

Client

KATAHDIN ANALYTICAL

Sample No. 23, SILTY SAND, WP2792-9 25SLB 12 0203

Sieve Siz	<u>Percent Passing</u>	PROJECT <u>Specifications</u> %
1/2 1/4 # 4 # 10 # 20	98.0 97.0 94.2	
# 40 # 60 # 100 # 200	91.4 88.5 79.6 30.2 11.8	

S. W. COLE ENGINEERING, INC.

REPORT OF GRADATION ASTM C-117, C-136

Project No.

99008

Date

06/09/1999

Project

MISCELLANEOUS

Client

KATAHDIN ANALYTICAL

Sample No. 24, SILTY SAND, WP2792-10 255LB120708

Sieve	<u>Size</u>	Percent Passing	PROJECT <u>Specifications</u> %
#	4	100.0	
#	10	99.9	
#	20	99.7	
#	40	99.0	
#	60	91.0	
# 1	00	23.6	
# 2	00	3.4	· ·

APPENDIX C AQUIFER CHARACTERIZATION DATA

SUMMARY OF SLUG TEST SOUTH CAROLINA Department of Health and Environmental Control (DHEC)

Site Data

SITE ID #:

01782

COUNTY:

North Charleston, South Carolina

FACILITY NAME:

Former Charleston Naval Complex

Slug Data

See Zone F RCRA Facility Investigation Report, E/A&H, 1996 for all data measurements.

Water Level Recovery Data was measured by a Hermit Data Logger.

Slug Test Conducted in well(s) number
Initial Rise/Drawdown in well (feet)
Radius of Well Casing (feet)
Effective Radius of Well (feet)
Static Saturated Aquifer Thickness (feet)

Static Saturated Aquifer Thickness (feet)
Length of Well Screen (feet)

Static Height of Water Column in Well (ft)

613004	613004	620002	620002
Rise=4.1	Fall=1.5	Rise=3.8	Fall=2.0
0.083	0.083	0.083	0.083
			*-
6	6	6.5	6.5
9.4	9.4	9.4	9.4
6	6	6.5	6.5

Calculations

The method for aquifer calculations was: Bouwer-Rice

Calculated values by well were as follows:

Slug Test Conducted in well(s) number
Hydraulic Conductivity (ft/day) (geometric mean)

613004	62002	
0.32	0.41	

Thickness of the aquifer used to calculate hydraulic conductivity was 5 to 6 feet.

The aquifer is water table.

The estimated seepage velocity is 6.8 feet per year based on

a hydraulic conductivity of 0.7 ft/day (for Quaternary sand aquifer), a hydraulic gradient of 0.0096 (from 9/11/99 Site 25 potentiometric data), and

a porosity of 36 per cent for the Quaternary sandy soil.

SUMMARY OF SLUG TEST SOUTH CAROLINA Department of Health and Environmental Control (DHEC)

Site Data

SITE ID #:

01782

COUNTY:

North Charleston, South Carolina

FACILITY NAME:

Former Charleston Naval Complex

Slug Data

See Zone F RCRA Facility Investigation Report for all data measurements.

Water Level Recovery Data was measured by a Hermit Data Logger.

Slug Test Conducted in well(s) number Initial Rise/Drawdown in well (feet)

Radius of Well Casing (feet)

Effective Radius of Well (feet)

Static Saturated Aquifer Thickness (feet)

Length of Well Screen (feet)

Static Height of Water Column in Well (ft)

607001	607001	613001	613001
Rise=1.4	Fall=1.5	Rise=3.2	Fall=1.5
0.083	0.083	0.083	0.083
5	5	4	4
1.9	1.9	9.4	9.4
5	5	4	4

Calculations

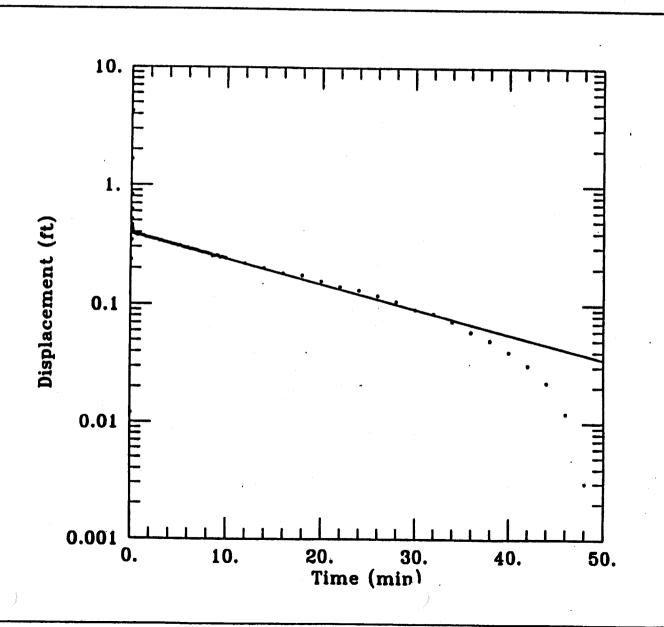
The method for aquifer calculations was: Bouwer-Rice

Calculated values by well were as follows:

Slug Test Conducted in well(s) number

Hydraulic Conductivity (ft/day) (geometric mean)

607001	613001	Geo. Mean of 4 Wells
1.8	1.0	0.7


	EnSafe/Allen & Hoshall Project: ZONE F - Naval Base Charleston			Monitoring Well NBCF613004							
Pro	ject: 2	ZONE	F-N	aval B	ase O	hariesi	an		Coordinates: 2319622.98 E, 373	823 <i>70 l</i>	V
	Location: Charleston, SC				Surface Elevation: 8.6 feet ms						
	rted a						-		TOC Elevation: Q44 feet msl		
	pletec								Depth to Groundwater: 7.01 fee		Measured: 12/18/96
								olit spoon sampler cert. # 889)	Groundwater Elevation: 243 fe	et msi	
	dogist:			ILE EI	IN G I	ici ila	13C E	ET. F 809/	Total Well Deptir 13.5 feet bgs Well Screen: 3.7 to 13.1 feet bgs		
DEPTH	LTHOLOGIC		П	X PECOVERY	PID (ppm)	GRAPHIC LOG	SOIL CLASS	GEOLO	GIC DESCRIPTION	ELEV. (ft-mst)	WELL DIAGRAM
								Surface conditions:	Asphalt		A Strout >
5-			1	20	2.4	34. %	SP SC/	ROC and trace amore mottled clay; moist; seem on bottom of : Shelby tube: Top: C Bottom: tan and bro	is mottled CaCO3 sand with unts of black to green soft; some samdy shell hash spoon; pepper color. aCO3 gravel on top; tan; dry; wn red mottled; moist to wet; dry clay; soft; medium	6.3	2" 10 Sch. 40 PVC Riser
			2	100	0	3 3	SC SC	Clayey sand: same a above.	es bottom of shelby tube	18 8	01 slot PVC screen
10-			3	40	0						0 /= ()
			4	75	0		SC SP	Clay: gray to mottle medium plasticity; all bottom of spoon.	d red and brown; fat; stiff; ternates to wet sands at	-14	
15-				/5	U						eud Gab
20-									•		

Client: CLEAN

Location: NAVAL BASE CHARLESTON

Project: 2906-08450

FALLING HEAD SLUG TEST NBCF613004

DATA SET: 61304FAL.AQT 04/15/97

AGUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice

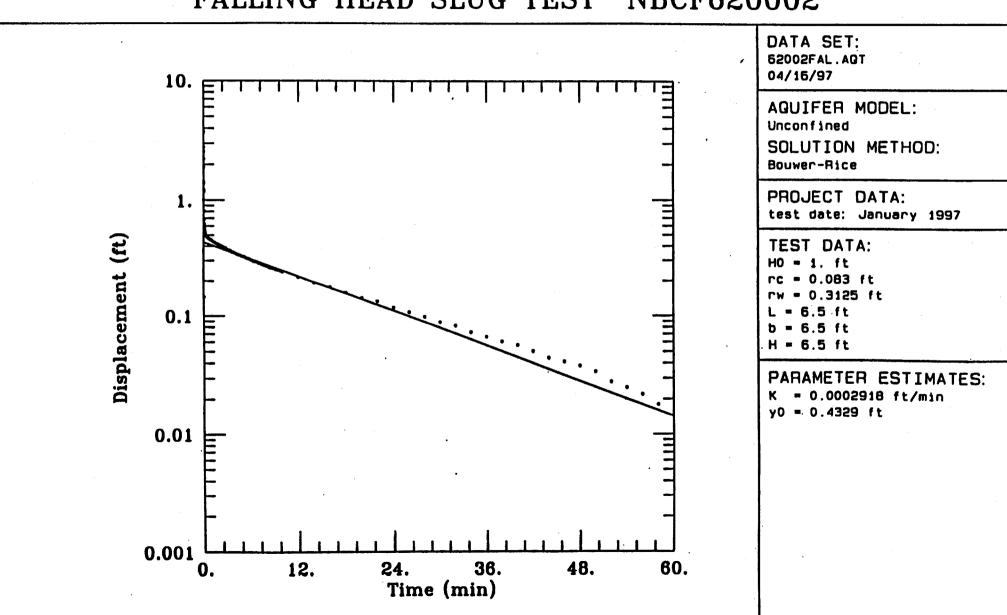
PROJECT DATA: test date: January 1997

TEST DATA: HO = 1. ft rc = 0.083 ft rw = 0.3125 ft L = 6. ft b = 6. ft H = 6. ft

PARAMETER ESTIMATES: K = 0.0002619 ft/min y0 = 0.391 ft Client: CLEAN Company: E/A&H Location: NAVAL BASE CHARLESTON Project: 2906-08450 RISING HEAD SLUG TEST NBCF613004 DATA SET: 61304RIS.AQT 04/15/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: test date: January 1997 Displacement (ft) TEST DATA: HO = 1. ft rc = 0.083 ft rw = 0:3125 ft 0.1 - 6. ft - 6. ft H = 6. ft PARAMETER ESTIMATES: K = 0.0001895 ft/miny0 - 0.384 ft 0.01 0.001 0. 12. 24. 36. 48. **60.** Time (min)

AQTESOL

En	Sai	fe/	'All	en	&	Ho	shall	Monitoring Well	NBC	F620002
Project	ZONE	- Na	val Ba	se On	arlesto	XI)		Coordinates: 2320270.09 E, 373	259.77 N	
Location	c Charle	stan,	SC					Surface Elevation: 9,8 feet msl		· ·
Started	ol 14:30	an O	7-03-	96				TOC Elevation: 8.58 feet msl		
Complet	ed at 16	15 on (29-03	-96				Depth to Groundwater: 560 fee	TOC	Measured: 12/18/96
Ortling N	ethoct	125"	D 17.1	T (CO)	HSA H	ith sp	ft spoon sampler	Groundwater Elevation: 3.98 fee	t msi	
Oriting (ompany	Alar	ce En	virann	ental	19C 00	ert. #889)	Total Well Depth: 12.6 feet bgs		
Geologis	t aa	yte						Well Screen: 28 to 12.0 feet bgs		
DEPTH IN FEET LTHOLOGIC	SWIFTE AWAYTICAL SWIFTE	SAPLEND	X PECOVERY	(wda) CILA	GRAPHIC LOG	SOIL CLASS	GEOLÓ	OGIC DESCRIPTION	ELEV. (it-msd)	WELL DIAGRAM
10-		1 2	100	2	0.0000 0.0000 0.0000	t dis	Sand and clay: gramedium; stiff; moist Shelby Tube (7-9 fine to coarse; dec	brown; fine to medium sand; by w/ some red-brown; fine to bgs): bottom: Sand: gray;	4.8 2.8 -2 -22	end cap
20-										


Client: CLEAN

Location: NAVAL BASE CHARLESTON

Company: E/A&H

Project: 2906-08450

FALLING HEAD SLUG TEST NBCF620002

AQ TESOL

Client: CLEAN Company: E/A&H Location: NAVAL BASE CHARLESTON Project: 2906-08450 RISING HEAD SLUG TEST NBCF620002 DATA SET: 62002RIS.AQT 04/15/97 10. AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: 1. test date: January 1997 Displacement (ft) TEST DATA: HO = 1. ft - 0.083 ft - 0.3125 ft 0.1 6.5 ft 6.5 ft PARAMETER ESTIMATES: K = 0.000283 ft/miny0 = 0.419 ft0.01 0.001 0. 12. 24. 36. 48. 60. Time (mir'

ACTESOL

EnSafe/Allei		Monitoring Well N	
Project: ZONE F - Naval Base	Unanesion	Coordinates: 2317609.15 E, 374168.	33 N
Location: Charleston, SC		Surface Elevation: 8.5 feet msl	
Started at 14:05 on 11-02-96		TOC Elevation: 10.78 feet msl	
Completed at 14:30 on 11-02-96		Depth to Groundwater: 8.67 feet 7	
Driling Method: 4.25" ID (7.5" 0		Groundwater Elevation: 2.11 feet ms	
Drilling Company: Alliance Environ	nmental (SC cert. #889)	Total Well Depth: 10.0 feet bgs	
Geologist: B. Blythe		Well Screen: 7.7 to 9.6 feet bgs	
INFEET LITHOLOGIC SAMPLE ANALYTICAL SAMPLE SAMPLE SAMPLE PID form)	SOIL CLASS SOIL CLASS	OGIC DESCRIPTION	WELL DIAGRAM
5- 10-	Surface: Asphalt. Note: No splitspoor location due to det NBCF6070ID locate	a samples were taken at this alled lithologic sampling in ed approximately 25 ft east-refer to log of NBCF80701D lic details.	end cap

Company: E/A&H Client: LLEAN Location: NAVAL BASÉ CHARLESTON Project: 2906-08450 FALLING HEAD SLUG TEST NBCF607001 DATA SET: 60701FAL, AQT 04/11/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: test date: January 1997 Displacement (ft) TEST DATA: - 0.083 ft 0.3125 ft 0.1 PARAMETER ESTIMATES: K = 0.001209 ft/miny0 = 1.457 ft0.01 0.001 8. 0. 10. Time (min)

AGTESOL

Company: E/A&H Client: CLEAN Project: 2906-08450 Location: NAVAL BASE CHARLESTON RISING HEAD SLUG TEST NBCF607001 DATA SET: 60701RIS.AGT 04/11/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: test date: January 1997 Displacement (ft) TEST DATA: HO = 1. ftrc = 0.083 ft- 0.3125 ft 0.1 PARAMETER ESTIMATES: K = 0.001418 ft/miny0 = 1.581 ft0.01 0.001 8. 10. 2. Time (min) AGTESO

EnSafe/Allen & Hoshall Monitoring		F613001
Project: ZONE F - Naval Base Charleston Coordinates: 23/9224.2		aredo) _d
Location: Charleston, SC Surface Elevation: 9.5	teet msl	
Started at 14:00 on 10-21-98 TOC Elevation: 9,48 fe		
Completed at 15:30 on 10-21-98 Depth to Groundwater:		Measured 12/18/98
Drilling Method: 4.25" ID (7.5" OD) HSA with split spoon sampler Groundwater Elevation:		
Driling Company: Alliance Environmental (SC cert. # 889) Total Well Depth: 13.3 ft		
Geologist: B. Blythe Well Screen: 3.3 to 2.7 SSY GEOLOGIC DESCRIPTION HELD SO SERVICE	(ft-mas)	WELL DIAGRAM
Surface conditions: Asphalt No recovery: evidence of sandy clay with mottled black organic sandy clay on augers. No recovery. SM Sand: red and grey; fine to medium; silty; de dry to moist. Sand and clay: gray to green; fine to medium; dense; moist: with saturated sand lenses at 11.4.	nse; 25 nse; 18 15 n; 5	end cap 2" ID Sch. 40 PVC Riser (**Tititititititititititititititititititi

Client: CLEAN Company: E/A&H Location: NAVAL BASE CHARLESTON Project: 2906-08450 FALLING HEAD SLUG TEST NBCF613001 DATA SET: 61301FAL, AQT 04/15/97 AGUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: test date: January 1997 Displacement (ft) TEST DATA: HO = 1. ftrc = 0.083 ft rw - 0.3125 ft = 4. ft - 4. ft H = 4. ftPARAMETER ESTIMATES: 0.1 K = 0.0005749 ft/miny0 - 0.4125 ft 0.01 6. 12. 18. 24. 30. Time (min)

ARTESOL!

Client: CLEAN Company: E/A&H Location: NAVAL BASE CHARLESTON Project: 2906-08450 RISING HEAD SLUG TEST NBCF613001 DATA SET: 61301RIS.AQT 10. 04/15/97 -AGUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice PROJECT DATA: test date: January 1997 Displacement (ft) TEST DATA: H0 = 1. ftrc = 0.083 ft - 0,3125 ft - 4. ft - 4. ft H = 4. ft PARAMETER ESTIMATES: 0.1 K = 0.0009022 ft/miny0 = 0.4989 ft0.01 8. 16. 0. 24. 32. 40. Time (min'

APPENDIX D

RBCA CALCULATIONS

	Dermal	Incidental Ingestion	Inhalation	Minimum
	RBSL	RBSL	RBSL	RBSL
	mg/L	mg/L	mg/L	mg/L
Benzene	0.85	68.52	0.15	0.15
Toluene	23.98	5677.78	5.38	5.38
Ethylbenzene	6.05	2838.89	14.50	6.05
Xylene	102.33	56777.78	NA*	102.33
Naphthalene	1.63	1135.56	2.63	1.63
MTBE	25.92	141.94	293.44	25.92

^{*}No inhalation reference dose is available for xylenes; therefore, no inhalation RBSL can be calculated.

Prepared By:

Reviewed By:

Construction Worker Dermal RBSLs

	Kow	MW	Кр	В	τ _{event}	С	b	t*	t _{event}	DAevent
			cm/hr	unitless	hr/event			hr	hr/event	·
Benzene	199.5262315	78.1	0.11551543	0.392637855	2.87E-01	6.32E-01	6.03E-01	6.90E-01	1	eq 3.3
Toluene	537.0317964	92.1	0.259561335	0.958068292	3.44E-01	1.13E+00	1.31E+00	1.33E+00	1	eq 3.2
Ethylbenzene	1412.537545	106.2	0.569219802	2.256154884	4.13E-01	2.36E+00	4.39E+00	1.70E+00	1	eq 3.2
Xylene*	1584.893192	106.2	0.638675123	2.531447415	4.13E-01	2.63E+00	5.31E+00	1.72E+00	1	eq 3.2
Naphthalene	1995.262315	128.2	0.605452393	2.636638957	5.48E-01	2.73E+00	5.69E+00	2.29E+00	1	eq 3.2
MTBE	15.136	88.15	0.00769788	0.027797704	3.27E-01	3.52E-01	3.20E-01	7.85E-01	1	eq 3.3

	BW	AT	EV	ED	EF	SA	CSF derm	Rfd derm	Target	RBSL	RBSL
	kg	day	events/day	yrs	days/yr	cm ²	(mg/kg-day) ⁻¹	mg/kg-day	Risk or HQ	mg/L	mg/L
Benzene	70	25550	1	1	90	4500	2.99E-02	NA	1.00E-06		8.52E-01
Toluene	70	365	1	1	90	4500	NA	1.60E-01	1.0	2.40E+01	0.012
Ethylbenzene	70	365	1	1	90	4500	NA	9.70E-02	1.0	6.05E+00	
Xylene*	70	365	1	1	90	4500	NA	1.84E+00	1,0	1.02E+02	
Naphthalene	70	365	1	1	90	4500	NA	3.20E-02	1.0	1.63E+00	
MTBE	70	365	1	1	90	4500	NA	5.00E-03	1.0	2.59E+01	

^{*} Kow and MW values for xylene, m-

Prepared By:

Reviewed By:

Construction Worker Incidental Ingestion RBSLs

	BW	AT	IR	ED	EF	Target	CSF oral	Rfd oral	RBSL
	kg	day	L/day	yrs	days/yr	Risk or HQ			mg/L
Benzene	7 0	25550	0.01	1	90	1.00E-06	2.90E-02		6.85E+01
Toluene	70	365	0.01	1	90	1.0	NA	2.00E-01	5677.778
Ethylbenzene	70	365	0.01	1	90	1.0	NA	1.00E-01	2838.889
Xylene	70	365	0.01	1	90	1.0	NA NA	2.00E+00	56777.78
Naphthalene	70	365	0.01	1	90	1.0	NA	4.00E-02	1135.556
MTBE	70	365	0.01	1	90	1.0	NA NA	5.00E-02	141.9444

Construction Worker Inhalation RBSLs

Chemical	Dair	Dwater	Н	θ _{acap}	θ _{wcap}	θ.	e _{wa}	θτ	Deff-cap	Deff-s
	cm²/s	cm²/s	cm³/cm³	cm³/cm³	cm ³ /cm ³	cm ³ /cm ³	cm³/cm³	cm ³ /cm ³	cm²/s	cm ² /s
Benzene	0.093	1.10E-05	2.26E-01	0.038	0.342	0.33	0.15	0.40		
foluene	0.085	9.40E-06	3.01E-01					0.48	1.35E-05	1.01E-02
thylbenzene				0.038	0.342	0.33	0.15	0.48	1.07E-05	9.20E-03
	0.076	8.50E-06	2.80E-01	0.038	0.342	0.33	0.15	0.48	9.85E-06	8.22E-03
Cylenes	0.072	8.50E-06	2.78E-01	0.038	0.342	0.33	0.15	0.48	9.55E-06	
laphthalene	0.072	9.40E-06	2.00E-03	0.038						7.79E-03
MTBE					0.342	0.33	0.15	0.48	5.79E-04	7.83E-03
	0.102	1.05E-05	4.16E-02	0.038	0.342	0.33	0.15	0.48	3.90E-05	1.10E-02

Chemical	hcap	hv	Deff-ws	Uair	δair	Lgw	W	VFwamb	TR (carc)	HI (nonc)
	cm	cm	cm²/s	cm/sec	cm	cm	cm	mg/m³/mg/L		
Benzene	5	117	3.18E-04	225	200	122	1500	1.97E-05	1.00E-06	NA
Toluene		117	2.54E-04	225	200	122	1500	2.09E-05	NA NA	170
Ethylbenzene	5	117	2.34E-04	225	200	122	1500	1.79E-05	NA NA	
Xylenes	5	117	2.27E-04	225	200	122	1500	1.72E-05	NA NA	
Naphthalene	5	117	5.17E-03	225	200	122	1500	2.83E-06	NA NA	
MTBE	5	117	8.79E-04	225	200	122	1500	9.99E-06	NA NA	

Chemical	TR (carc)	HI (nonc)	BWadult	AT	Sfi (carc)	RfD (nonc)	IR air	EF	ED	RBSLair		DDC:
			kg	yr	f 1	[mg/kg-day]	m³/day	day/yr	Vr	mg/m ³	cm ³ /cm ³	RBSLwater mg/L
Benzene	1.00E-06	NA	70	70	2.90E-02	NA I	20	90	1	3.43E-02	2.26E-01	0.15
Toluene	NA	1	70	1	NA	1.14E-01	20	90	- i	1.62E+00	3.01E-01	5.38
Ethylbenzene	NA	1	70	1	NA	2.86E-01	20	90	- i -	4.06E+00	2.80E-01	14.50
Xylenes	NA NA	11	70	1	NA	NA*	20	90	1	NA*	2.78E-01	NA*
Naphthalene	NA NA	1	70	1	NA	3.71E-04	20	90	1	5.27E-03	2.00E-03	2.63
MTBE	NA	1	70	1	NA	8.60E-01	20	90	<u>i</u>	1.22E+01	4.16E-02	293,443

^{*}No inhalation reference dose is available for xylenes; therefore, no RBSL can be calculated for xylene.

Prepared By:

Reviewed By:

IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA

Department of Health and Environmental Control (DHEC)

SITE ID#	01782	COUNTY Columbia		
FACILITY NAME	Site 25, Building 1	346		
STREET ADDRESS	Charleston Naval	Complex, North Charleston, S	<u>C</u> .	
Soil Risk Evalua	tion Data			
TDU				Figu
TPH		993 mg/kg		
Soil % SAND (Estim	•	88 %		
Soil % CLAY (Estima	•	7 %	_	
Worst Case	Benzene	120 mg/kg	Cs	
Soil Analyses	Toluene	360 mg/kg	Cs	
	Ethylbenzene	<u>560</u> mg/kg	Cs	
	Xylenes	2200_ mg/kg	Cs	
	Naphthalene	217.9 mg/kg	Cs	
	MTBE	4.3 mg/kg	Cs	
Natural Organic Carl		616_ mg/kg	foc	
Average Annual Rec	-	<u>25</u> cm	Hw	
Distance from highest lmpact to water table	st Soil e	46 cm	L	
Bulk Density of Soil		1.6 g/cc	Bď	1
Wetting Front Suctio	n	10 cm	Hf	2
Soil Hydraulic Condu	ıctivity	5.60E-03 cm/sec	Kf	3
Porosity	·	0.45 decimal %	Φ	4
Residual Water Conf	tent	0.04 decimal %	Wr	5
	exposure pathways fror ndwater - utility worker i			
			<u></u>	
		L RISK EVALUATION		

SOIL LEACHABILITY MODEL FOR MTBE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346
Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

INPUT:

CUC	Chemical of Concer	n

Bd Soil Bulk Density (1)

Crsbl Risk Based Screening Level

Cs Concentration of COC in soil

DAF Dilution/Attenuation Factor (2)

foc Organic Carbon Content in Soil (3)

H' Henry's Law Constant (4)

Hf Wetting front suction head (always negative) (5)

Hw Average Annual Recharge (3)

Kf Soil Hydraulic Conductivity (6)

Koc Soil/Water Partioning Coefficient (2)

L Depth between soil sample with greatest COC concentration to groundwater.

Ø Porosity (7)

t1/2 Biodegradation "half life" (2)

TPH Total Petroleum Hydrocarbons, EPA Method 3550

Wr Residual Water Content (8)

	MTBE
g/cm3	1.6
mg/L	25.92
mg/kg	217.9
unitless	8
mg/kg	616
unitless	0.04
cm	-10
cm	25
cm/s	0.0056
ml/g	12
cm	46

unitless	0.45	
days	183	\Box
mg/kg	993	_
volume fraction	0.04	

				TI		

Equation Set I - Determine soil pore water concentration resulting from physical partioning (Cw).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

$$Cw = Cs*((Wr *1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((e-Wr)*H'))) = 176.55$$
 mg/

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

$$f = \emptyset - Wr = 0.41$$
 decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

$$t = (f/Kf)*(L-(Hw-Hf))*(In(Hw+((L-Hf)/(Hw-Hf)))) = 1,218$$
 seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

$$Kd = Koc*foc*1E-6 = 0.007084$$
 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

$$Vc = Vw*(1 + ((Bd*Kd)/ø)) = 38,082$$
 ft/year

Equation Set	IV - Deter	mine biodeç	gradation ra	tes and provi	de final (COC conce	entration (Cf) at depth	of conce	ern.			
	Step 1 -	Calculate 1	the time (Tc) in days requ	uired for	the COC t	o reach gr	roundwater.					
. *					ī	c = 365	day/yr*((L	./30.48cm/f	t)/Vc) =	0.	.01	days	
	Step 2 -	Calculate e	estimated co	oncentration of	of COC i	n the soil	pore water	r (Cp) neces	sary to p	rotect gr	oundwa	ater.	
				Ср	o = 10^(log (Crsbl)	+ ((Tc/2.3	3)*(0.693/t1	(/2))) =	25	.92	mg/l	
			COC conc	entration in s	oil pore	water (Cp)	is greater	r than Crsbl,	therefore	e the SS	TL mus	t be calcul	ated.
Equation Set	V - Calcula	ate the Site	Specific Ta	rget Level (S	STL) for	the COC i	n soil.						
C	sstl for	МТВЕ	=	Cp*DAF*(((B	d*Koc*f	cs) + Wr+	(F*'H'''))/	/(Wr*1g/cc-	+ Bd)) =	9.	.98778	4 mg/kg	
		in soil							=				
PREPARED BY	' ;												
				-		Date							
				•									
CHECKED BY:													
						Date							

IN-SITU SOIL RISK EVALUATION

Site Data	SOUTH CAROLINA Department of Health and Environmental Control (DHEC)									
Instructions	Site Data									
Data List Constituent: MTBE (BTEX, Napth.)										
List Constituent: MTBE	Instructions									
Table	Provide results, separately, for each const	tituent in the worst case s	oil analy	sis.						
Bioremediation "half-life"	Data									
Bioremediation "half-life"	List Constituent: MTBE									
Bioremediation "half-life" 183 days t 1/2 C2 Soil/water partitioning coefficient 12 ml/g K oc C2 C2	(BTEX, Napth.)	.				Table				
Total Organic Carbon Content 12 ml/g	Bioremediation "half-life"	183 days	t 1/2							
Equation Step Set	Soil/water partitioning coefficient									
Total Organic Carbon Content Leachate Concentration 176.552 mg/l C w I 2 Air Filled Porosity 0.41 decimal % f II 1 Infiltration Rate Time 1,218 seconds t II 2 Velocity of Water 39,042 ft/year V w II 3 Soil/Water Distribution Coefficient Contaminant Percolation Rate 38,082 ft/year V c III 2 Time to Reach Groundwater 0 days T c IV 1 Concentration reaching Groundwater 25.92 mg/l C p IV 2 Site Specific Target Level Does concentration of chemical of concern in soil exceed SSTL? PES Risk of Human Exposure due to contaminated soil. X YES	Results									
Leachate Concentration 176.552 mg/l C w I 2 Air Filled Porosity 0.41 decimal % f III 1 Infiltration Rate Time 1,218 seconds t III 2 Velocity of Water 39,042 ft/year V w III 3 Soil/Water Distribution Coefficient 0.01 ml/g K d III 1 Contaminant Percolation Rate 38,082 ft/year V c III 2 Time to Reach Groundwater 0 days T c IV 1 Concentration reaching Groundwater 25.92 mg/l C p IV 2 Site Specific Target Level 9.9878 mg/kg C sstl V Conclusions Does concentration of chemical of concern in soil exceed SSTL? YES Risk of Human Exposure due to contaminated soil. X YES NO				-	Step					
Air Filled Porosity	•			I .						
Infiltration Rate Time Velocity of Water Soil/Water Distribution Coefficient Contaminant Percolation Rate Time to Reach Groundwater Concentration reaching Groundwater Site Specific Target Level Does concentration of chemical of concern in soil exceed SSTL? Risk of Human Exposure due to contaminated soil. X YES NO				 						
Velocity of Water 39,042 ft/year V w II 3 Soil/Water Distribution Coefficient 0.01 ml/g K d III 1 Contaminant Percolation Rate 38,082 ft/year V c III 2 Time to Reach Groundwater 0 days T c IV 1 Concentration reaching Groundwater 25.92 mg/l C p IV 2 Site Specific Target Level 9.9878 mg/kg C sstl V Conclusions Does concentration of chemical of concern in soil exceed SSTL? YES Risk of Human Exposure due to contaminated soil. X YES NO			_							
Soil/Water Distribution Coefficient 0.01 ml/g K d III 1 Contaminant Percolation Rate 38,082 ft/year V c III 2 Time to Reach Groundwater 0 days T c IV 1 Concentration reaching Groundwater 25.92 mg/l C p IV 2 Site Specific Target Level 9.9878 mg/kg C sstl V Conclusions Does concentration of chemical of concern in soil exceed SSTL? YES Risk of Human Exposure due to contaminated soil. X YES NO			-							
Time to Reach Groundwater	Soil/Water Distribution Coefficient				1					
Concentration reaching Groundwater Site Specific Target Level Does concentration of chemical of concern in soil exceed SSTL? Risk of Human Exposure due to contaminated soil. X YESNO	Contaminant Percolation Rate	38,082 ft/year	Vс	111	2					
Site Specific Target Level 9.9878 mg/kg C sstl V Conclusions Does concentration of chemical of concern in soil exceed SSTL? YES Risk of Human Exposure due to contaminated soil. X YES NO			Тс	IV	1					
Conclusions Does concentration of chemical of concern in soil exceed SSTL? Risk of Human Exposure due to contaminated soil. X YESNO			-		2					
Does concentration of chemical of concern in soil exceed SSTL? Risk of Human Exposure due to contaminated soil. X YES NO	Site Specific Target Level	9.9878 mg/kg	C sstl	V						
Risk of Human Exposure due to contaminated soil. X YES NO	Conclusions									
Risk of Human Exposure due to contaminated soil. X YES NO										
XYESNO	Does concentration of chemical of concern	YES								
	Risk of Human Exposure due to contamina	ated soil.								
IN-SITU SOIL RISK EVALUATION	X	YES		_NO						
IN-SITU SOIL RISK EVALUATION										
	IN-SITU SC	IL RISK EVALUATION	ON							

SOIL LEACHABILITY MODEL FOR BENZENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346
Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

coc	Chemical of Concern		BENZENE
Bd	Soil Bulk Density (1)	g/cm3	1.6
Crsbl	Risk Based Screening Level	mg/L	0.15
Cs	Concentration of COC in soil	mg/kg	120
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	616
H.	Henry's Law Constant (4)	unitless	0.23
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25.00
Kf	Soil Hydraulic Conductivity (6)	cm/s	5.60E-03
Koc	Soil/Water Partioning Coefficient (2)	ml/g	81
L	Depth between soil sample with	cm	46
	greatest COC concentration to groundwater.		
Φ	Porosity (7)	unitless	0.45
t1/2	Biodegradation "half life" (2)	days	16
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	993
Wr	Residual Water Content (8)	volume fraction	0.04

CALCULATIONS:

Equation Set I - Determine soil por	water concentration result	ting from physi	cal partioning (Cw).
-------------------------------------	----------------------------	-----------------	----------------------

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

fcs = (foc + TPH/1.724)*1E-6 = 0.0012 decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

Cw = Cs*((Wr*1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) = 685.3766 mg/

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

 $f = \emptyset - Wr = 0.41$ decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

t = (f/Kf)*(L-((Hw-Hf)*(In((Hw+L-Hf)/(Hw-Hf))))) = 1,218 seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 39,042 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

Kd = Koc*foc*1E-6 = 0.049896 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

Vc = Vw/(1 + ((Bd*Kd)/Ø)) = 33,159 ft/year

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

Tc = 365 day/yr*((L/30.48cm/ft)/Vc) = 0.02 days

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.

 $Cp = 10^{(\log (Crsbl) + ((Tc/2.3)*(0.693/t1/2)))} = 0.1501$ mg/l

COC concentration in soil pore water (Cw) is less than concentration necessary to protect groundwater (Cp). Not necessary to calculate SSTL

Equation Set V - Calc	ulate the Site Sp	pecific Target Level (SSTL) for the COC in soil.	
Csstl for	BENZENE	= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) =	0.210255 mg/kg
	in soil		
			•
PREPARED BY:		<u></u>	
		Date	
CHECKED BY:			
		Date	

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)

<u>.</u>		Caltralia Eliviolimen	itar Control (L	JILO			
Site Data							
SITE ID# FACILITY NAME	01782 Site 25, Building 1346						
Instructions							***************************************
Provide results, se	eparately, for each consti	ituent in the worst cas	e soil analys	is.			
Data							
List Constituent:	BENZENE						
(BTEX, Napth.)							Table
Bioremediation "ha	alf-life"	16	_days	t 1/2			C2
Soil/water partition	ing coefficient	81	_ml/g	K oc			C2
Results							
					Equation Set	Step	
Total Organic Carb	oon Content	0.0012	decimal %	f cs	1	1	
Leachate Concentr	ration	685.377	mg/l	C w	1	2	
Air Filled Porosity			_decimal %	f	11	1	
Infiltration Rate Tim	ne		seconds	t	11	2	
Velocity of Water			ft/year	V w	11	3	
Soil/Water Distribut	•	0.0499		Κd	Ш	1	
Contaminant Perco	· · · · · · · · · · · · · · · · · · ·		ft/year	V c	III	2	
Time to Reach Gro	•	****	days	Tc	IV	1	
Concentration read	· ·	0.1501	_ ~	C p	IV	2	
Site Specific Targe	t Levei	0.2103	_mg/kg	C sstl	V		
Conclusions							
Does concentration	n of chemical of concern	in soil exceed SSTL?			YES	·	
					· - -		
Misk of Fluitian Exp	posure due to contamina X	YES			NO		
		, 123	,		_140		
	IN-SITU	J SOIL RISK EVAL	UATION				

SOIL LEACHABILITY MODEL FOR NAPHTHALENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346
Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

COC	Chemical of Concern		NAPHTHALENE
Bd	Soil Bulk Density (1)	g/cm3	1.6
Crsbi	Risk Based Screening Level	mg/L	1.63
Çs	Concentration of COC in soil	mg/kg	217.9
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	616
H.	Henry's Law Constant (4)	unitless	0.002
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	2 5
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0056
Koc	Soil/Water Partioning Coefficient (2)	ml/g	1543
L	Depth between soil sample with	cm	46
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	- unitless	0.45
t1/2	Biodegradation "half life" (2)	days	48
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	993
Wr	Residual Water Content (8)	olume fraction	0.04

$\sim \Lambda$		III A	TIC	NS:
LA	ムしい	ULA	1110	INS.

Equation Set I	 Determine soil pore 	water concentration resulting	g from ph	ysical p	partioning (Cw).	
----------------	---	-------------------------------	-----------	----------	------------------	--

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

fcs = (foc + TPH/1.724)*1E-6 = 0.0012 decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

Cw = Cs*((Wr *1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((e-Wr)*H'))) = 4.67 mg/l

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

 $f = \emptyset - Wr = 0.41$ decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

t = (f/Kf)*(L-(Hw-Hf))*(In(Hw+((L-Hf)/(Hw-Hf)))) = 1,218 seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 39042 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

Kd = Koc * foc * 1E - 6 = 0.950488 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

 $Vc = Vw^{*}(1 + ((Bd^{*}Kd)/e)) = 8,915$ ft/year

Equation Set IV - Determine biodegradation	n rates and provide final COC concentration (Ci	f) at depth of concern.		and the same of th
Step 1 - Calculate the time	(Tc) in days required for the COC to reach ground	undwater.		
	Tc = 365 day/yr*	((L/30.48cm/ft)/Vc) =	0.06	_days ~
Step 2 - Calculate estimate	ed concentration of COC in the soil pore water (Cp) necessary to protect (groundwater.	
	$Cp = 10^{(log (Crsbl) + ((Tc/2)))}$	2.3)*(0.693/t1/2))) =	1.63	_mg/l
C	OC concentration in soil pore water (Cp) is great	ter than Crsbl, therefore th	ne SSTL must	be calculated.
Equation Set V - Calculate the Site Specific	c Target Level (SSTL) for the COC in soil.			
Csstl for IAPHTHALENE in soil	= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H''	'))/(Wr*1g/cc+Bd)) =	23.744418	mg/kg =
PREPARED BY:	Date			e e e e e e e e e e e e e e e e e e e
	Date			
CHECKED BY:	Date			

	OUTH CAROLINA and Environmental Cor	itrol (DHI	≣C)	
Site Data			·	
SITE ID # 01782 FACILITY NAME Site 25, Building 1346				
Instructions				
Provide results, separately, for each const	ituent in the worst case s	oil analy	sis.	
Data				
List Constituent: NAPHTHALENE				
(BTEX, Napth.)	-			Table
Bioremediation "half-life"	48 days	t 1/2		C2
Soil/water partitioning coefficient	1543 ml/g	K oc		C2
Results				
			Equation S Set	Step
Total Organic Carbon Content	0.0012 decimal %	f cs	1	1
Leachate Concentration Air Filled Porosity	4.674 mg/l 0.41 decimal %	C w	j u	2
Infiltration Rate Time	1,218 seconds	f t		1 2
Velocity of Water	39,042 ft/year	Vw	11 	3
Soil/Water Distribution Coefficient	0.95 ml/g	Kd	III	1
Contaminant Percolation Rate	8,915 ft/year	Vc -	Ш	2
Time to Reach Groundwater	0 days	Tc	IV	1
Concentration reaching Groundwater	1.63 mg/l	Ср	IV	2
Site Specific Target Level	24 mg/kg	C sstl	V	
Conclusions				
Does concentration of chemical of concern	in soil exceed SSTL?		YES	
Risk of Human Exposure due to contamina	ited soil.			
X	YES		NO	
IN-SITU SO	IL RISK EVALUATION	NC		

SOIL LEACHABILITY MODEL FOR TOLUENE

RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346

Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

COC	Chemical of Concern		TOLUENE
Bd	Soil Bulk Density (1)	g/cm3	1.6
Crsbl	Risk Based Screening Level	mg/L	5.38
Cs	Concentration of COC in soil	mg/kg	360
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	616
H.	Henry's Law Constant (4)	unitless	0.30
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0056
Koc	Soil/Water Partioning Coefficient (2)	ml/g	133
L	Depth between soil sample with	cm	46
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	unitless	0.45
t1/2	Biodegradation "half life" (2)	days	22
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	993
Wr	Residual Water Content (8)	volume fraction	0.04

CALCULATIONS:

Equation Set I - Determine soil pore water concentration resulting from physical partioning (Cw)
--

Step 1 - Calculate the total organic carbon content (fcs) of the soil. fcs = (foc + TPH/1.724)*1E-6 = 0.0012decimal % Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil. Cw = Cs*((Wr*1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((e-Wr)*H'))) =mg/i Equation Set II - Determine the velocity of the soil pore water (Vw) Step 1 - Calculate the air filled porosity (f) in decimal percent. f = Ø - Wr = 0.41decimal % Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site). $t = (f/Kf)*(L-(Hw-Hf))*(In(Hw+((L-Hf)/(Hw-Hf)))) = ____ 1,218$ seconds Step 3 - Determine the velocity of the water (Vw) in feet per year. Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 39,042ft/year Equation Set III - Determine the organic retardation effect (Vc) of the contaminant. Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil. Kd = Koc*foc*1E-6 = 0.081928Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration. Vc = Vw*(1 + ((Bd*Kd)/Ø)) = 30,234ft/year

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.				
Step 1	- Calculate t	he time (Tc) in days required for the COC to reach groundwater.		
÷		Tc = 365 day/yr*((L/30.48cm/ft)/Vc) =	0.02	days
Step 2	: - Calculate e	estimated concentration of COC in the soil pore water (Cp) necessary to p	protect groundwater	•
		$Cp = 10^(log (Crsbl) + ((Tc/2.3)*(0.693/t1/2))) =$	5.3831	_mg/l
		COC concentration in soil pore water (Cp) is greater than Crsbl, there	fore the SSTL must	be calculated.
Equation Set V - Calc	ulate the Site	Specific Target Level (SSTL) for the COC in soil.		
Csstl for	TOLUENE	= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) =	10.95168	6 mg/kg
	in soil			
PREPARED BY:				
		Date		ANTHON TO A CONTROL OF THE ANTHON TO A CONTROL O
CHECKED BY:	<u></u>	Date		· .
		-		

SOUTH CAROLINA

Department of Health and Environmental Control (DHEC)

Doparament of Field	aith and Environmental Ci	ם) וטווויט	nec)		
Site Data					<u> </u>
SITE ID # 01782 FACILITY NAME Site 25, Building 134	16	-			
Instructions				<u></u>	
Provide results, separately, for each cor	nstituent in the worst case	soil ana	ilvsis.		
Data					
List Constituent: TOLUENE					
(BTEX, Napth.)					Table
Bioremediation "half-life"	22days	t 1/2			C2
Soil/water partitioning coefficient	133ml/g	K oc			C2
Results					
Total Organic Carbon Content Leachate Concentration	0.0012 decimal % 55.243 mg/l	f cs C w	Equation Set I	Step 1	
Air Filled Porosity	0.41 decimal %	f w	, 	2 1	
Infiltration Rate Time	1,218 seconds	t	 II	2	
Velocity of Water	39,042 ft/year	V w	11	3	
Soil/Water Distribution Coefficient	0.0819_ml/g	Κd	Ш	1	
Contaminant Percolation Rate Time to Reach Groundwater	30,234 ft/year	V c	111	2	
Concentration reaching Groundwater	0 days 5 mg/l	Tc	IV IV	1	
Site Specific Target Level	11 mg/kg	Cp C sstl	IV V	2	
Conclusions					
Does concentration of chemical of conce	ern in soil exceed SSTL?		YES		
Risk of Human Exposure due to contami	nated soil.				
X	YES		NO		
			-		
IN-SITU S	OIL RISK EVALUAT	ION			

SOIL LEACHABILITY MODEL FOR ETHYLBENZENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346

Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

coc	Chemical of Concern		ETHYLBENZENE
Bd	Soil Bulk Density (1)	g/cm3_	1.6
Crsb	Risk Based Screening Level	mg/L	6.05
Cs	Concentration of COC in soil	mg/kg	560
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	616
H.	Henry's Law Constant (4)	unitless	0.28
H	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0056
Kod	Soil/Water Partioning Coefficient (2)	ml/g	176
L	Depth between soil sample with	cm	46
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	unitless	0.45
t1/2	Biodegradation "half life" (2)	days	10
ТРН	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	993
Wi	Residual Water Content (8)	volume fraction	0.04

28,179

ft/year

CA	10	111	ΛТ	'n	NC

Equatio	on Set	I - E	Determi	ne soil	pore	water	concentration	resulting	from pl	nysical	partioning	(Cw).
---------	--------	-------	---------	---------	------	-------	---------------	-----------	---------	---------	------------	-------

Step 1 - Calculate the total organic carbon content (fcs) of the soil. fcs = (foc + TPH/1.724)*1E-6 =0.0012 decimal % Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil. Cw = Cs*((Wr *1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) =73.0737682 Equation Set II - Determine the velocity of the soil pore water (Vw) Step 1 - Calculate the air filled porosity (f) in decimal percent. 0.41 decimal % Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site). t = (f/Kf)*(L-(Hw-Hf))*(In(Hw+((L-Hf)/(Hw-Hf)))) =1,218 Step 3 - Determine the velocity of the water (Vw) in feet per year. Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) =ft/vear Equation Set III - Determine the organic retardation effect (Vc) of the contaminant. Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil. Kd = Koc*foc*1E-6 = 0.108416ml/g Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration. Vc = Vw*(1 + ((Bd*Kd)/Ø)) =

Equation Set IV - Determine biodegradation ra	tes and provide final COC concentration (Cf) at depth of concern.		, and delegan
Step 1 - Calculate the time (To	e) in days required for the COC to reach groundwater.		
	Tc = 365 day/yr*((L/30.48cm/ft)/Vc) =	0.02	days
Step 2 - Calculate estimated co	oncentration of COC in the soil pore water (Cp) necessary to protec	t groundwater.	
	$Cp = 10^{(log (Crsbi) + ((Tc/2.3)*(0.693/t1/2)))} =$	6.06	mg/l
coc	concentration in soil pore water (Cp) is greater than Crsbl, therefore	the SSTL mu	st be calculated.
Equation Set V - Calculate the Site Specific Ta	arget Level (SSTL) for the COC in soil.		
Csstl for THYLBENZENE =	Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) =	14.4942	92 mg/kg
in soil			
PREPARED BY:	Date		, others, we have the second
CHECKED BY:	Date		
	Date		

	OUTH CAROLINA th and Environmental Con	itrol (DHE	EC)		
Site Data		- <u></u>			<u> </u>
SITE ID # 01782 FACILITY NAME Site 25, Building 1346	}				
Instructions					
Provide results, separately, for each cons	tituent in the worst case s	oil analy	sis.		
Data					
List Constituent: ETHYLBENZENE (BTEX, Napth.)					Table
Bioremediation "half-life"	10days	t 1/2			C2
Soil/water partitioning coefficient	176ml/g	K oc			C2
Results					
			Equation Set	Step	
Total Organic Carbon Content	0.0012 decimal %	f cs	! :	1	
Leachate Concentration Air Filled Porosity	7.31E+01 mg/l 0.41 decimal %	C w	 	2	
Infiltration Rate Time	1,218 seconds	f t		1 2	
Velocity of Water	39,042 ft/year	ν V w	11 	3	
Soil/Water Distribution Coefficient	0.1084 ml/g	Kd	 III	1	
Contaminant Percolation Rate	28,179 ft/year	Vc	III	2	
Time to Reach Groundwater	0 days	Тс	IV	1	
Concentration reaching Groundwater	6 mg/l	Ср	IV	2	
Site Specific Target Level	14 mg/kg	C sstl	V		
Conclusions					
Does concentration of chemical of concern	n in soil exceed SSTL?		YES	·	
Risk of Human Exposure due to contamina	ated soil.				
X	_YES		NO		
		-	-		
					- <u> </u>
IN-SITU SC	OIL RISK EVALUATION	NC			

SOIL LEACHABILITY MODEL FOR XYLENES

RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

SITE INFORMATION:

Site: Site 25, Building 1346
Location: Charleston Naval Complex, North Charleston, SC

REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

COC	Chemical of Concern		XYLENES
Bd	Soil Bulk Density (1)	g/cm3_	1.6
Crsbl	Risk Based Screening Level	mg/L	102.33
Cs	Concentration of COC in soil	mg/kg	2200
DAF	Dilution/Attenuation Factor (2)	unitless	8
foc	Organic Carbon Content in Soil (3)	mg/kg	616
H'	Henry's Law Constant (4)	unitless	0.28
Hf	Wetting front suction head (always negative) (5)	cm	-10
Hw	Average Annual Recharge (3)	cm	25
Kf	Soil Hydraulic Conductivity (6)	cm/s	0.0056
Koc	Soil/Water Partioning Coefficient (2)	ml/g	639
L	Depth between soil sample with	cm	46
	greatest COC concentration to groundwater.		
Ø	Porosity (7)	unitless	0.45
t1/2	Biodegradation "half life" (2)	days	28
TPH	Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	9 93
Wr	Residual Water Content (8)	volume fraction	0.04

CA	וטו	II A	TIO	NS:
		,, 4	1 11 7	IV.S:

Equation Set I - Determine soil por	water concentration resulting fi	rom physical	partioning (C	:w).
-------------------------------------	----------------------------------	--------------	---------------	------

Step 1 - Calculate the total organic carbon content (fcs) of the soil. fcs = (foc + TPH/1.724)*1E-6 = 0.0012 decimal % Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil. Cw = Cs*((Wr *1g/cc + Bd)/((Bd*Koc*fcs) + Wr + ((ø-Wr)*H'))) =mg/l Equation Set II - Determine the velocity of the soil pore water (Vw) Step 1 - Calculate the air filled porosity (f) in decimal percent. 0.41 decimal % Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site). t = (f/Kf)*(L-(Hw-Hf))*(In(Hw+((L-Hf)/(Hw-Hf)))) = 1,218Step 3 - Determine the velocity of the water (Vw) in feet per year. Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) =39,042 ft/year Equation Set III - Determine the organic retardation effect (Vc) of the contaminant. Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil. Kd = Koc*foc*1E-6 = 0.393624Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration. Vc = Vw*(1+((Bd*Kd)/ø)) = 16,270ft/year

Equation Set IV - Determine bi	degradation rates and provide final COC concentration (Cf) at depth of concern.	
Step 1 - Calcul	te the time (Tc) in days required for the COC to reach groundwater.	
	Tc = 365 day/yr*((L/30.48cm/ft)/Vc) = 0.03 days	
Step 2 - Calcul	te estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.	
	$Cp = 10^{(log (Crsbl) + ((Tc/2.3)*(0.693/t1/2)))} = 102.42 mg/l$	
	COC concentration in soil pore water (Cp) is greater than Crsbl, therefore the SSTL must be calculate	∍d.
Equation Set V - Calculate the	Site Specific Target Level (SSTL) for the COC in soil.	
Csstl for XYLEN		
in soi		
PREPARED BY:	Date	··
	Date	

Date

SOUTH CAROLINA Department of Health and Environmental Control (DHEC)

Site Data					<u> </u>
SITE ID # 01782 FACILITY NAME Site 25, Building 1346					
Instructions					
Provide results, separately, for each const	tituent in the worst case s	soil analy	/sis.		
Data					
List Constituent: XYLENES	_				
(BTEX, Napth.)					Table
Bioremediation "half-life"	28days	t 1/2			C2
Soil/water partitioning coefficient	639 ml/g	K oc			C2
Results					
			Equation Set	Step	
Total Organic Carbon Content	0.0012 decimal %	fcs	1	1	
Leachate Concentration	102.5741 mg/l	C w	i	2	
Air Filled Porosity	0.41 decimal %	f	11	1	
Infiltration Rate Time	1,218 seconds	t	11	2	
Velocity of Water Soil/Water Distribution Coefficient	39,042 ft/year	V w	II 	3	
Soil/Water Distribution Coefficient Contaminant Percolation Rate	0.3936 ml/g	Κd	10	1	
Time to Reach Groundwater	16,270 ft/year	V c	III	2	
Concentration reaching Groundwater	0 days	T c	IV IV	1	
Site Specific Target Level	102 mg/l 686 mg/kg	C p	IV V	2	
010 0000110 131301 20.0.	uu	C sstl	V		
Conclusions					
Does concentration of chemical of concern	in soil exceed SSTL?		YES		
Risk of Human Exposure due to contamina	ated soil	,			İ
X	YES		NO		
			_140		
IN-SITU SO	IL RISK EVALUATION				
1117011000	IL NION EVALUATION	. / 134			,

Site Specific Target Level Calculations for Soil: Construction Worker Inhalation of Volatiles from Soil

Parameter Descriptions:	Units	Parameter Descriptions:	Units
ABS = Absorption Fraction AF = Adherence Factor of Soil to Skin AT = Averaging Time	mg/cm² days	ET = Exposure Time FI = Fraction Ingested HQ = Hazard Quotient	hours/day
BW = Body Weight CF = Conversion Factor	kg	IR = Inhalation or Ingestion Rate RBSL = Risk Based Sceening Level	m³/hour or mg/day
$CSF_D = Dermal Cancer Slope Factor$ $CSF_1 = Inhalation Cancer Slope Factor$	(mg/kg-day) ⁻¹ (mg/kg-day) ⁻¹	RfD _D = Dermal Reference Dose	mg/kg-day
CSF _o = Oral Cancer Slope Factor	(mg/kg-day) ⁻¹	RfD ₀ = Oral Reference Dose	mg/kg-day mg/kg-day
ED = Exposure Duration EF = Exposure Frequency	year days/year	SA = Skin Surface Area Available for Contact VF _{SS} = Volatilization Factor	cm ²
ELCR = Excess Lifetime Cancer Risk			

Construction Worker Inhalation of Vapor from Soil (Outdoor)

Constituent	H	ET	EF	ED	AT	BW
	m³/hour	hours/day	days/year	years	days	kg
Benzene	0.83	8	06	-	25550	02
Toluene	0.83	8	06	-	87.6	07
Ethylbenzene	0.83	8	06	-	87.6	70
Xylenes	0.83	8	06		87.6	70
Napthalene	0.83	8	06	-	87.6	70

Constituent	CSF	RfD	Target ELCR Target HQ	Target HQ	RBSLAIR	VFss	BBSLea
	(mg/kg-						1000
	day) ⁻¹	mg/kg-day			mg/m³	mg/m ³ / mg/kg	ma/ka
			12.5				
Benzene	0.029	NA	1.0E-06	AN	NA 0.102787	1 315.05	7 052
Toluene	AN	0.11	AN	1 OF + 00	1 1242	1 215 05	
Ethylbenzene	AN		ΑN	1.0F+00	2 9638	1 315.05	00,007
Xylenes	AN		AN	1.0E+00	AN	1.315-05	054°077
Napthalene	AN	0.004	AN	1.0E+00	0.04088	1.31E-05	3.123
							20.10

Source: ASTM (American Society for Testing and Materials), 1997. Standard Guide for Risk-Based Corrective Action applied at Petroleum Release Sites: E 1739 - 95E1, Annual Book of ASTM Standards, West Conshohocken, PA

HYDROCARBON CONSTITUENT CONCENTRATIONS IN WATER BASED ON RAOULT'S LAW

Parameter Descriptions:	Units
C _w = Aqueous Solubility of Organic Constituents Dissolved from Product	mg/L
C _F = Concentration of the Constituent in the Fuel	mg/L
K _{FW} = Fuel/Water Partition Coefficient	3 . –
P _F = Density of the Product	g/mL
MW _F = Molecular Weight of the Product	g/moi
C _{SAT} = Aqueous Solubility of the Constituent	mol/L
MW _C = Molecular Weight of the Constituent	g/mol
$K_{FW} = (10^3 (\text{mL/L}) p_F) / (MW_F * C_{SAT} / (MW_C * 1000))$	3
$C_W = C_F/K_{FW}$	mg/L
Source: "Solubility, Sorption, and Transport of Hydrophobic Organic Chemicals in	
Complex Mixtures," EPA Environmental Research Brief, EPA/600/M-91/009, Rob	
(err Environmental Research Laboratory, ADA, Oklahoma.	··· ··

Key Assumptions:

MW_F: Molecular Weight of Weathered Product, Source: "A Practical Approach to the Design, Operation, and Monitoring of In-Situ Soil Venting Systems*, Shell Development/Shell Oil Company, Houston, Texas.

P_F: Density of the Product, Source: Conoco Material Safety Data Sheet for unleaded gasoline.

Concentration of Hydrocarbon Constituents in Water Based on Molar Solubility

Constituent	MW _F	C _{SAT}	MWc	P _F	K _{FW}	C _F	Cw
	g/mol	mg/L	g/mol	g/mL		mg/L	mg/L
Benzene	111.00	1,750	78	0.77	309.19	18,480.0	59.77
Toluene	111.00	535	92	0.77	1192.89	115,500.0	96.82
Ethylbenzene	111.00	152	106	0.77	4837.60	15,400.0	3.18
Xylene	111.00	198	106	0.77	3713.71	92,400.0	24.88
MTBE	111.00	48,000	88.15	0.77	12.74	67,375.0	5288.71
Naphthalene	111.00	33	128.2	0.77	26948.95	5,852.0	0.22

SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 10-year Migration of Constituents in Groundwater

Parameter Descriptions:	Units	Parameter Descriptions:	Units
POE = Point of Exposure SSTL = Site-Specific Target Level SSTL _{SOURCE} = Hydrocarbon Concentration in Plume Source Area protective of RBSLs at POE SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE X _{POE} = x = Distance from Plume Source to POE (along Centerline) X _{COMP} = x = Distance from POE to Compliance Point (along Centerline) Y = Source Width (Perpendicular to Flow Direction) Z = Source Depth (Perpendicular to Flow Direction in Vertical Plane) K _S = Saturated Hydraulic Conductivity i = Groundwater Gradient	mg/L mg/L mg/L m m m m	$ ho_S=$ Soil Bulk Density $f_{OC}=$ Fraction Organic Carbon in Soil $lpha_X=$ Longitudinal Dispersivity = x/10 $lpha_Y=$ Transverse Dispersivity = $lpha_X/3$ $lpha_Z=$ Vertical Dispersivity = $lpha_X/20$ $k_{OC}=$ Organic Carbon Partition Coefficient $k_D=$ Soil-Water Sorption Coefficient $V=$ Pore Water Velocity $R_C=$ Constituent Retardation Factor $V/R_C=$ Maximum Transport Rate of Dissolved Constituent = $\{K_Si\}/\{\theta R_C\}$	g/cm³ g-C/g-soil m m cm³-H ₂ O/g-C cm³-H ₂ O/g-soil m/sec
θ = Porosity in Saturated Zone	cm³/cm³	RBSL = Risk-Based Screening Level in Water Provided by SCDHEC (1998)	mg/L

Dilution & Attenuation without Biological Decay

Constituent	X _{POE}	X _{POE}	Y	Z	t	K _s	i	θ	ρs	α_{X}	αγ	α_{Z}	f _{oc}	k _{oc}	k _D	V	R _C	C _{POE} /C _{SOURCE}
	ft	m	m	m	sec	m/sec	m/m	:m ³ /cm	g/cm ³	m	m	m	g-C/g-soil	cm ³ -H ₂ O/g-C	cm³-H ₂ O/g-soil	m/sec		
Benzene	202	61.5703	15	2	3.15E+08	2.47E-06	0.0096	0.36	1.73	6.16	2.05	0.31	6.16E-04	81	0.049896	6.59E-08	1.240	8.355E-05
Toluene	108	32.9188	15	2	3.15E+08	2.47E-06	0.0096	0.36	1.73	3.29	1.10	0.16	6.16E-04	133	0.081928	***************************************		
Ethylbenzene	56	17.069	15	2	3.15E+08	2.47E-06	0.0096	0.36	1.73	1.71	0.57	0.09	6.16E-04	176		6.59E-08	1.394	9.799E-03
Xylenes	26.1	7.95538	15	-											0.108416	6.59E-08	1.521	2.134E-01
	20.1	7.33336	13		3.15E+08	2.47E-06	0.0096	0.36	1.73	0.80	0.27	0.04	6.16E-04	639	0.393624	6.59E-08	2.892	4.047E-01
MTBE	287	87.4787	15	2	3.15E+08	2.47E-06	0.0096	0.36	1.73	8.75	2.92	0.44	6.16E-04	12	0.007392	6.59E-08	1.036	7.519E-06
Naphthalene	25.5	7.77249	15	2	3.15E+08	2.47E-06	0.0096	0.36	1.73	0.78	0.26	0.04	6.16E-04	1543	0.950488	6.59E-08	5.568	4.617E-02

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Petroleum Releases, Bureau of Underground Storage Tank Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[\frac{\left(x - \frac{vt}{R_c}\right)}{2\sqrt{\alpha_X} \frac{vt}{R_c}} \right] \times erf \left[\frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Constituent	C _{SOURCE}	C _x	RBSL
	mg/L	mg/L	mg/L
Benzene	59.77	0.005	0.005
Toluene	96.82	0.949	1.000
Ethylbenzene	3.18	0.679	0.700
Xylenes	24.88	10.069	10.000
MTBE	5288.71	0.040	0.040
Naphthalene	0.217	0.010	0.010

Prepared By: Augun & Sisco

Reviewed By: Allan Jukus

SITE 25, BUILDING 1346 ZONE F, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

Predicted 20-year Migration of Constituents in Groundwater

Parameter Descriptions:	Units	Parameter Descriptions:	Units
POE = Point of Exposure SSTL = Site-Specific Target Level SSTL _{SOURCE} = Hydrocarbon Concentration in Plume Source Area protective of RBSLs at POE SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE X _{POE} = x = Distance from Plume Source to POE (along Centerline) X _{COMP} = x = Distance from POE to Compliance Point (along Centerline) Y = Source Width (Perpendicular to Flow Direction) Z = Source Depth (Perpendicular to Flow Direction in Vertical Plane) K _S = Saturated Hydraulic Conductivity i = Groundwater Gradient θ = Porosity in Saturated Zone	mg/L mg/L mg/L m m m m cm/sec cm/cm	$ ho_S=$ Soil Bulk Density $f_{OC}=$ Fraction Organic Carbon in Soil $lpha_X=$ Longitudinal Dispersivity = $x/10$ $lpha_Y=$ Transverse Dispersivity = $lpha_X/3$ $lpha_Z=$ Vertical Dispersivity = $lpha_X/20$ $k_{OC}=$ Organic Carbon Partition Coefficient $k_D=$ Soil-Water Sorption Coefficient $V=$ Pore Water Velocity $V=$ Pore Water Velocity $V=$ Constituent Retardation Factor $V/R_C=$ Maximum Transport Rate of Dissolved Constituent = $(K_si)/(\theta R_C)$ RBSL = Risk-Based Screening Level in Water Provided by SCDHEC (1998)	g/cm ³ g-C/g-soil m m m cm ³ -H ₂ O/g-C cm ³ -H ₂ O/g-soil m/sec m/sec

Dilution & Attenuation without Biological Decay

Constituent	X _{POE}	X _{POE}	Y	Z	t	K _s	i	θ	ρ_{S}	α_{X}	αγ	α_{Z}	f _{oc}	k _{oc}	k _D	V	R _c	C _{POE} /C _{SOURCE}
	ft	m	m	m	sec	m/sec	m/m	:m³/cm	ı g/cm³	m	m	m	g-C/g-soil	cm³-H₂O/g-C	cm³-H ₂ O/g-soil	m/sec	_	. 52 555162
Benzene	355	108.205	15	2	6.31E+08	2.47E-06	0.0096	0.36	1.73	10.82	3.61	0.54	6.16E-04	81	0.049896	6.59E-08	1,240	0 5075 05
Toluene	159	48.4638	15	2	6.31E+08	2.47E-06	0.0096	0.36	1.73	4.85	1.62	0.24	9.78E-04	· 		ļ		8.597E-05
Ethylbenzene	76.9	23.4394	15	1 2	6.31E+08			+			 			133	0.130074	6.59E-08	1.625	1.052E-02
			- 10	-	0.31E+08	2.47E-06	0.0096	0.36	1.73	2.34	0.78	0.12	9.78E-04	176	0.172128	6.59E-08	1.827	2.251E-01
Xylenes	36.5	11.1253	15	2	6.31E+08	2.47E-06	0.0096	0.36	1.73	1.11	0.37	0.06	9.78E-04	639	0.624942	C FOF 00		
MTBE	507	154.535	15	2	6.31E+08	2.47E-06	0.0096	0.20			 			 		6.59E-08	4.003	4.029E-01
		 					0.0096	0.36	1.73	15.45	5.15	0.77	9.78E-04	12	0.011736	6.59E-08	1.056	7.300E-06
Naphthalene	34	10.3633	15	2	6.31E+08	2.47E-06	0.0096	0.36	1.73	1.04	0.35	0.05	9.78E-04	1543	1.509054	6.59E-08	8.252	4.661E-02

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Petroleum Releases, Bureau of Underground Storage Tank Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[\frac{\left(x - \frac{vt}{R_c}\right)}{2\sqrt{\alpha_X} \frac{vt}{R_c}} \right] \times erf \left[\frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[\frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Constituent	C _{SOURCE}	C _x	RBSL
	mg/L	mg/L	mg/L
Benzene	60	0.005	0.005
Toluene	97	1.019	1.000
Ethylbenzene	3	0.716	0.700
Xylenes	25	10.023	10.000
MTBE	5289	0.039	0.040
Naphthalene	0.217	0.010	0.010

Prepared By: Algon F. Sisco

Reviewed By: allast. Jankins